Citation: Yanli Cui, Xiaoning Guo, Yingyong Wang, Xiangyun Guo. Carbonylative Suzuki coupling reactions of aryl iodides with arylboronic acids over Pd/SiC[J]. Chinese Journal of Catalysis, ;2015, 36(3): 322-327. doi: 10.1016/S1872-2067(14)60258-8 shu

Carbonylative Suzuki coupling reactions of aryl iodides with arylboronic acids over Pd/SiC

  • Corresponding author: Xiaoning Guo, 
  • Received Date: 14 September 2014
    Available Online: 28 November 2014

    Fund Project: 国家自然科学基金(21203233) (21203233) 山西省自然科学基金(2013021007-1). (2013021007-1)

  • High surface area SiC has been used to prepare a Pd/SiC catalyst using the liquid reduction method, and the resulting catalyst was used for the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids. The catalyst was also characterized by X-ray diffraction, inductively coupled plasma-mass spectroscopy and high-resolution transmission electron microscopy. The results of these analyses showed that homogeneous Pd nanoparticles with a mean diameter of 2.8 nm were uniformly dispersed on the SiC surface. Optimization of the reaction conditions for the carbonylative Suzuki coupling reaction, including the solvent, base, pressure, temperature and reaction time, revealed that the model reaction of iodobenzene (1.0 mmol) with phenylboronic acid (1.5 mmol) could reach 90% conversion with a selectivity of 99% towards the diphenyl ketone using 3 wt% Pd/SiC under 1.0 MPa of CO pressure at 100 ℃ for 8 h with K2CO3 (3.0 mmol) as the base and anisole as the solvent. The Pd/SiC catalyst exhibited broad substrate scope towards the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids bearing a variety of different substituents. Furthermore, the Pd/SiC catalyst exhibited good recyclability properties and could be recovered and reused up to five times with the conversion of iodobenzene decreasing only slightly from 90% to 76%. The decrease in the catalytic activity after five rounds was attributed to the loss of active Pd during the organic reaction.
  • 加载中
    1. [1]

      [1] Wang X J, Zhang L, Sun X F, Xu Y B, Krishnamurthy D, Senanayake C H. Org Lett, 2005, 7: 5593

    2. [2]

      [2] Hatano B, Kadokaw J, Tagaya H. Tetrahedron Lett, 2002, 43: 5859

    3. [3]

      [3] Gmouh S, Yang H L, Vaultier M. Org Lett, 2003, 5: 2219

    4. [4]

      [4] Yamamoto T, Kohara T, Yamamoto A. Chem Lett, 1976, 11: 1217

    5. [5]

      [5] Hatanaka Y, Fukushima S, Hiyama T. Tetrahedron, 1992, 48: 2113

    6. [6]

      [6] Brunet J J, Chauvin R. Chem Soc Rev, 1995, 24: 89

    7. [7]

      [7] Fillion E, Fishlock D, Wilsily A, Goll J M. J Org Chem, 2005, 70: 1316

    8. [8]

      [8] Jang D O, Moon K S, Cho D H, Kim J G. Tetrahedron Lett, 2006, 47: 6063

    9. [9]

      [9] Ishiyama T, Kizaki H, Miyaura N, Suzuki A. Tetrahedron Lett, 1993, 34: 7595

    10. [10]

      [10] Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J Org Chem, 1998, 63: 4726

    11. [11]

      [11] Khedkar M V, Sasaki T, Bhanage B M. RSC Adv, 2013, 3: 7791

    12. [12]

      [12] Niu J R, Liu M M, Wang P, Long Y, Xie M, Li R, Ma J T. New J Chem, 2014, 38: 1471

    13. [13]

      [13] Zhan Y Y, Cai G H, Zheng Y, Shen X N, Zheng Y, Wei K M. Acta Phys- Chim Sin (詹瑛瑛, 蔡国辉, 郑勇, 沈小女, 郑瑛, 魏可镁. 物理化学学报), 2008, 24: 171

    14. [14]

      [14] Li X Y, Wang F G, Pan X L, Bao X H. Chin J Catal (李星运, 王发根, 潘秀莲, 包信和. 催化学报), 2013, 34: 257

    15. [15]

      [15] Liu H T, Li S Q, Zhang S B, Wang J M, Zhou G J, Chen L, Wang X L. Catal Commun, 2008, 9: 51

    16. [16]

      [16] Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y. Int J Hydrogen Energy, 2013, 38: 12733

    17. [17]

      [17] Zhang G Q, Peng J X, Sun T J, Wang S D. Chin J Catal (张国权, 彭家喜, 孙天军, 王树东. 催化学报), 2013, 34: 1745

    18. [18]

      [18] Li H L, Lei Y G, Huang Y, Fang Y P, Xu Y H, Zhu L, Li X. J Nat Gas Chem, 2011, 20: 145

    19. [19]

      [19] Jiao Z F, Guo X N, Zhai Z Y, Jin G Q, Wang X M, Guo X Y. Catal Sci Technol, 2014, 4: 2494

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    18. [18]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(199)
  • Abstract views(921)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return