Citation: Juanjuan Chen, Chang Wang, Bin Dong, Wenguang Leng, Jun Huang, Rile Ge, Yanan Gao. Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate[J]. Chinese Journal of Catalysis, ;2015, 36(3): 336-343. doi: 10.1016/S1872-2067(14)60257-6 shu

Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate

  • Corresponding author: Yanan Gao, 
  • Received Date: 16 October 2014
    Available Online: 19 November 2014

    Fund Project: 国家自然科学基金(21273235, 21303076) (21273235, 21303076)

  • Acidic, basic and neutral ionic liquids (ILs) have been used as catalysts in the carbonylation of glycerol with urea. The results show that neutral ILs have high catalytic activity in the reaction. The excellent performance of the catalysts can be attributed to the synergistic effect of the cation and anion. We speculated that the cation with positive charge activates urea, and the anion with negative charge activates glycerol. In addition, the well balanced acid-basic properties of the catalysts are necessary for good catalytic performance. The ILs can be reused at least five times without loss of activity. Using ILs, instead of the traditional metal catalysts, reduces the use of non-renewable resources. It is eco-friendly that two inexpensive and bio-based raw materials were used and the catalytic reaction was carried out without solvent.
  • 加载中
    1. [1]

      [1] Ma F R, Hanna M A. Bioresour Technol, 1999, 70: 1

    2. [2]

      [2] Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Green Chem, 2008, 10: 13

    3. [3]

      [3] Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chem Soc Rev, 2008, 37: 527

    4. [4]

      [4] Sonnati M O, Amigoni S, de Givenchy E P T, Darmanin T, Choulet O, Guittard F. Green Chem, 2013, 15: 283

    5. [5]

      [5] Hu J L, Li J J, Gu Y L, Guan Z H, Mo W L, Ni Y M, Li T, Li G X. Appl Catal A, 2010, 386: 188

    6. [6]

      [6] Lim Y N, Lee C, Jang H Y. Eur J Org Chem, 2014: 1823

    7. [7]

      [7] Strain F. US Patent 2 446 145. 1948

    8. [8]

      [8] Patel Y, George J, Pillai S M, Munshi P. Green Chem, 2009, 11: 1056

    9. [9]

      [9] Kim S C, Kim Y H, Lee H, Yoon D Y, Song B K. J Mol Catal B,2007, 49: 75

    10. [10]

      [10] Climent M J, Corma A, Frutos P D, Iborra S, Noy M, Velty A, Concepción P. J Catal, 2010, 269: 140

    11. [11]

      [11] Wang L G, Ma Y B, Wang Y, Liu S M, Deng Y Q. Catal Commun, 2011, 12: 1458

    12. [12]

      [12] Turney T W, Patti A, Gates W, Shaheen U, Kulasegaram S. Green Chem, 2013, 15: 1925

    13. [13]

      [13] Rahim M H A, He Q, Lopez-Sanchez J A, Hammond C, Dimitratos N, Sankar M, Carley A F, Kiely C J, Knight D W, Hutchings G J. Catal Sci Technol, 2012, 2: 1914

    14. [14]

      [14] Jagadeeswaraiah K, Kumar C R, Prasad P S S, Loridant S, Lingaiah N. Appl Catal A,2014, 469: 165

    15. [15]

      [15] Fujita S I, Yamanishi Y, Arai M. J Catal, 2013, 297: 137

    16. [16]

      [16] Sandesh S, Shanbhag G V, Halgeri A B. RSC Adv, 2014, 4: 974

    17. [17]

      [17] Claude S, Mouloungui Z, Yoo J W, Gaset A. US Patent 6 025 504. 2000

    18. [18]

      [18] Lee M S, Baek J H. US Patent 2 013 026 771 5A1. 2013

    19. [19]

      [19] Buzzeo M C, Evans R G, Compton R G. ChemPhysChem, 2004, 5: 1106

    20. [20]

      [20] Macfarlane D R, Forsyth M, Howlett P C, Pringle J M, Sun J, Annat G, Neil W, Izgorodina E I. Acc Chem Res, 2007, 40: 1165

    21. [21]

      [21] Liu H T, Liu Y, Li J H. Phys Chem Chem Phys, 2010, 12: 1685

    22. [22]

      [22] Mulik A, Chandam D, Patil P, Patil D, Jagdale S, Deshmukh M. J Mol Liq, 2013, 179: 104

    23. [23]

      [23] Welton T. Chem Rev, 1999, 99: 2071

    24. [24]

      [24] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J Am Chem Soc, 2002, 124: 5962

    25. [25]

      [25] Forbes D C, Weaver K J. J Mol Catal A, 2004, 214: 129

    26. [26]

      [26] Gu Y L, Shi F, Deng Y Q. Catal Commun, 2003, 4: 597

    27. [27]

      [27] Nockemann P, Thijs B, Parac-Vogt T N, Van Hecke K, Van Meervelt L, Tinant B, Hartenbach I, Schleid T, Ngan V T, Nguyen M T, Binnemans K. Inorg Chem, 2008, 47: 9987

    28. [28]

      [28] Bates E D, Mayton R D, Ntai I, Davis J H. J Am Chem Soc, 2002, 124: 926

    29. [29]

      [29] Sarkar A, Roy S R, Parikh N, Chakraborti A K. J Org Chem, 2011, 76: 7132

    30. [30]

      [30] Sarkar A, Roy S R, Chakraborti A K. Chem Commun, 2011, 47: 4538

    31. [31]

      [31] Park D W, Mun N Y, Kim K H, Kim I, Park S W. Catal Today, 2006, 115: 130

    32. [32]

      [32] Tharun J, Kathalikkattil A C, Roshan R, Kang D H, Woo H C, Park D W. Catal Commun, 2014, 54: 31

    33. [33]

      [33] Ju H Y, Manju M D, Kim K H, Park S W, Park D W. J Ind Eng Chem, 2008, 14: 157

    34. [34]

      [34] Kim D W, Roshan R, Tharun J, Cherian A, Park D W. Korean J Chem Eng, 2013, 30: 1973

    35. [35]

      [35] Kim M I, Choi S J, Kim D W, Park D W. J Ind Eng Chem, 2014, 20: 3102

    36. [36]

      [36] Kim D W, Kim C W, Koh J C, Park D W. J Ind Eng Chem, 2010, 16: 474

    37. [37]

      [37] Saravanamurugan S, Riisager A. Catal Today, 2013, 200: 94

    38. [38]

      [38] Fukumoto K, Yoshizawa M, Ohno H. J Am Chem Soc, 2005, 127: 2398

    39. [39]

      [39] Wang C, Liu X M, Yang M, Ma H Y, Yan P F, Slattery J M, Gao Y A. RSC Adv, 2013, 3: 8796

    40. [40]

      [40] Wang C, Liu J, Leng W G, Gao Y A. Int J Mol Sci, 2014, 15: 1284

    41. [41]

      [41] Singh A, Kumar A. J Org Chem, 2012, 77: 8775

    42. [42]

      [42] Zhang S G, Qi X J, Ma X Y, Lu L J, Deng Y Q. J Phys Chem B, 2010, 114: 3912

    43. [43]

      [43] Matsumoto K, Hagiwara R, Yoshida R, Ito Y, Mazej Z, Benkič P, Žemva B, Tamada O, Yoshino H, Matsubara S. Dalton Trans, 2004: 144

    44. [44]

      [44] Srour H, Rouault H, Santini C C, Chauvin Y. Green Chem, 2013, 15: 1341

    45. [45]

      [45] Cull S G, Holbrey J D, Vargas-Mora V, Seddon K R, Lye G J. Biotechnol Bioeng, 2000, 69: 227

    46. [46]

      [46] Schaber P M, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermochim Acta, 2004, 424: 131

    47. [47]

      [47] Li Q B, Zhang W Y, Zhao N, Wei W, Sun Y H. Catal Today, 2006, 115: 111

    48. [48]

      [48] Cláudio A F M, Swift L, Hallett J P, Welton T, Coutinho J A P, Freire M G. Phys Chem Chem Phys, 2014, 16: 6593

    49. [49]

      [49] Roy S R, Chakraborti A K. Org Lett, 2010, 12: 3866

    50. [50]

      [50] Chakraborti A K, Roy S R. J Am Chem Soc, 2009, 131: 6902

    51. [51]

      [51] Chakraborti A K, Roy S R, Kumar D, Chopra P. Green Chem, 2008, 10: 1111

    52. [52]

      [52] Lungwitz R, Strehmel V, Spange S. New J Chem, 2010, 34: 1135

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    12. [12]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    13. [13]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    14. [14]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    15. [15]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    16. [16]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(226)
  • Abstract views(607)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return