Citation: Wenshan Zhao, Chengke Qu, Lili Yang, Yuanchen Cui. Chitosan- supported cinchonine as an efficient organocatalyst for direct asymmetric aldol reaction in water[J]. Chinese Journal of Catalysis, ;2015, 36(3): 367-371. doi: 10.1016/S1872-2067(14)60248-5 shu

Chitosan- supported cinchonine as an efficient organocatalyst for direct asymmetric aldol reaction in water

  • Corresponding author: Yuanchen Cui, 
  • Received Date: 4 September 2014
    Available Online: 10 October 2014

  • Chitosan-supported succinic anhydride-cinchonine (CTS-SA-CN) was synthesized via a two-step route with succinic anhydride as the linker. The catalyst was used to promote the direct asymmetric aldol reaction between cyclohexanone and a variety of aromatic aldehydes in aqueous medium. Aldol adducts were obtained in excellent yields (up to 99%) and good enantioselectivities (up to 96% ee). The CTS-SA-CN catalyst was successfully recycled simply by filtration after use, and was reused 5 times without any significant loss of activity.
  • 加载中
    1. [1]

      [1] Machajewski T D, Wong C H, Lerner R A. Angew Chem Int Ed,2000, 39: 1352

    2. [2]

      [2] Yoshikawa N, Yamada Y, Das J, Sasai H, Shibasaki M. J Am Chem Soc, 1999, 121: 4168

    3. [3]

      [3] Trost B M, Brindle C S. Chem Soc Rev, 2010, 39: 1600

    4. [4]

      [4] Markert M, Mulzer M, Schetter B, Mahrwald R. J Am Chem Soc,2007, 129: 7258

    5. [5]

      [5] Li H H, He Y H, Yuan Y, Guan Z. Green Chem, 2011, 13: 185

    6. [6]

      [6] Zlotin S G, Kucherenko A S, Beletskaya I P. Russ Chem Rev,2009, 78: 737

    7. [7]

      [7] Xie B H, Li W, Liu Y, Li H H, Guan Z, He Y H. Tetrahedron,2012, 68: 3160

    8. [8]

      [8] Carrea G, Ottolina G, Lazcano A, Pironti V, Colonna S. Tetrahedron: Asymmetry,2007, 18: 1265

    9. [9]

      [9] List B, Lerner R A, Barbas C F III. J Am Chem Soc, 2000, 122: 2395

    10. [10]

      [10] Hayashi Y, Sumiya T, Takahashi J, Gotoh H, Urushima T, Shoji M. Angew Chem Int Ed, 2006, 45: 958

    11. [11]

      [11] Gauchot V, Schmitzer A R. J Org Chem, 2012, 77: 4917

    12. [12]

      [12] Gruttadauria M, Giacalone F, Noto R. Chem Soc Rev, 2008, 37: 1666

    13. [13]

      [13] Bugde S, Majik M, Mandrekar V, Nadkarni V, Tilve S. Synth Commun,2013, 43: 2536

    14. [14]

      [14] Huang W B, Liu Q W, Zheng L Y, Zhang S Q. Catal Lett, 2011, 141: 191

    15. [15]

      [15] Pesciaioli F, Righi P, Mazzanti A, Gianelli C, Mancinelli M, Bartoli G, Bencivenni G. Adv Synth Catal, 2011, 353: 2953

    16. [16]

      [16] Paradowska J, Rogozińska M, Mlynarski J. Tetrahedron Lett, 2009, 50: 1639

    17. [17]

      [17] Zheng B L, Liu Q Z, Guo C S, Wang X L, He L. Org Biomol Chem, 2007, 5: 2913

    18. [18]

      [18] Czarnecki P, Plutecka A, Gawroński J, Kacprzak K. Green Chem, 2011, 13: 1280

    19. [19]

      [19] Bisai V, Bisai A, Singh V K. Tetrahedron, 2012, 68: 4541

    20. [20]

      [20] Cozzi F. Adv Synth Catal, 2006, 348: 1367

    21. [21]

      [21] Kristensen T E, Hansen T. Eur J Org Chem,2010: 3179

    22. [22]

      [22] Liu Y X, Sun Y N, Tan H H, Liu W, Tao J C. Tetrahedron: Asymmetry, 2007, 18: 2649

    23. [23]

      [23] Liu Y X, Sun Y N, Tan H H, Tao J C. Catal Lett, 2008, 120: 281

    24. [24]

      [24] Font D, Sayalero S, Bastero A, Jimeno C, Pericàs M A. Org Lett, 2008, 10: 337

    25. [25]

      [25] Font D, Jimeno C, Pericás M A. Org Lett, 2006, 8: 4653

    26. [26]

      [26] Benaglia M, Celentano G, Cozzi F. Adv Synth Catal, 2001, 343: 171

    27. [27]

      [27] Gu L Q, Wu Y Y, Zhang Y Z, Zhao G. J Mol Catal A, 2007, 263: 186

    28. [28]

      [28] Dhar D, Beadham I, Chandrasekaran S. Proc Indian Acad Sci Chem Sci, 2003, 115: 365

    29. [29]

      [29] Monge-Marcet A, Cattoën X, Alonso D A, Nájera C, Man M W C, Pleixats R. Green Chem, 2012, 14: 1601

    30. [30]

      [30] Yan J C, Wang L. Chirality, 2009, 21: 413

    31. [31]

      [31] Ni B K, Headley A D. Chem Eur J, 2010, 16: 4426

    32. [32]

      [32] Kucherenko A S, Siyutkin D E, Maltsev O V, Kochetkov S V, Zlotin S G. Russ Chem Bull, 2012, 61: 1313

    33. [33]

      [33] Qin Y Y, Zhao W S, Yang L L, Zhang X, Cui Y C. Chirality, 2012, 24: 640

    34. [34]

      [34] Kumar M N V R. React Funct Polym, 2000, 46: 1

    35. [35]

      [35] Cui Y C, Zhang L, Li Y. Polym Advan Technol, 2005, 16: 633

    36. [36]

      [36] Vincent T, Guibal E. Ind Eng Chem Res, 2002, 41: 5158

    37. [37]

      [37] Viswanathan N, Meenakshi S. J Hazard Mater, 2010, 176: 459

    38. [38]

      [38] Reddy K R, Rajgopal K, Maheswari C U, Kantam M L. New J Chem, 2006, 30: 1549

    39. [39]

      [39] Ricci A, Bernardi L, Gioia C, Vierucci S, Robitzer M, Quignard F. Chem Commun, 2010, 46: 6288

    40. [40]

      [40] Qu C K, Zhao W S, Zhang L, Cui Y C. Chirality, 2014, 26: 209

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(210)
  • Abstract views(1189)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return