Citation: Huimin Liu, Yuming Li, Hao Wu, Jiaxiong Liu, Dehua He. Effects of α- and γ-cyclodextrin-modified impregnation method on physicochemical properties of Ni/SBA-15 and its catalytic performance in CO2 reforming of methane[J]. Chinese Journal of Catalysis, ;2015, 36(3): 283-289. doi: 10.1016/S1872-2067(14)60242-4 shu

Effects of α- and γ-cyclodextrin-modified impregnation method on physicochemical properties of Ni/SBA-15 and its catalytic performance in CO2 reforming of methane

  • Corresponding author: Dehua He, 
  • Received Date: 14 September 2014
    Available Online: 20 October 2014

  • Organic compounds containing multiple hydroxyl groups, namely α-cyclodextrin and γ-cyclodextrin, were used as additives for promoting Ni dispersion on supported Ni/SBA-15 catalysts. Catalysts prepared using modified and unmodified impregnation methods were characterized using N2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, temperature-programmed reduction, and thermogravimetric analysis, and their catalytic performance in the CO2 reforming of methane (CRM) to syngas was evaluated. The results show that compared with Ni/SBA-15 prepared using a conventional impregnation method, the cyclodextrin-modified catalysts had smaller NiO particles. They also exhibited higher catalytic activity and had stronger ability to resist carbon deposition in the CRM. Mechanistic studies showed that for the unmodified catalysts, Ni2+ could migrate into the channels of SBA-15 as a result of concentration differences, and the Ni species were sintered during the following thermal treatment processes, and could not be well dispersed. In contrast, various types of complex were formed between Ni(NO3)2 and the cyclodextrins, and this would be favorable for Ni2+ being taken into the channels of the SBA-15. The presence of cyclodextrins was beneficial to the mutual isolation of Ni species, and finally resulted in better dispersion of Ni species.
  • 加载中
    1. [1]

      [1] Bae J W, Kim A R, Baek S C, Jun K W. React Kinet Mech Catal, 2011, 104: 377

    2. [2]

      [2] Murata S, Hatanaka N, Kidena K, Nomura M. J Jpn Petrol Inst, 2006, 49: 240

    3. [3]

      [3] Fidalgo B, Menendez J A. Chin J Catal (催化学报), 2011, 32: 207

    4. [4]

      [4] Song C S, Pan W. Catal Today, 2004, 98: 463

    5. [5]

      [5] Tang S, Ji L, Lin J, Zeng H C, Tan K L, Li K. J Catal, 2000, 194: 424

    6. [6]

      [6] Kim D K, Stöwe K, Müller F, Maier W F. J Catal, 2007, 247: 101

    7. [7]

      [7] Laosiripojana N, Sutthisripok W, Assabumrungrat S. Chem Eng J, 2005, 112: 13

    8. [8]

      [8] Huang J, Ma R X, Gao Z H, Shen C F, Huang W. Chin J Catal (黄健, 马人熊, 高志华, 沈朝峰, 黄伟. 催化学报), 2012, 33: 637

    9. [9]

      [9] Bitter J H, Seshan K, Lercher J A. J Catal, 1999, 183: 336

    10. [10]

      [10] Zhang J, Zhao N, Wei W, Sun Y H. Int J Hydrogen Energy, 2010, 35: 11776

    11. [11]

      [11] Serrano-Lotina A, Martin A J, Folgado M A, Daza L. Int J Hydrogen Energy, 2012, 37: 12342

    12. [12]

      [12] Gallego G S, Mondragon F, Barrault J, Tatibouet J M, Batiot-Dupeyrat C. Appl Catal A, 2006, 311: 164

    13. [13]

      [13] Moradi G R, Rahmanzadeh M, Sharifnia S. Chem Eng J, 2010, 162: 787

    14. [14]

      [14] Choudhary V R, Mondal K C. Appl Energy, 2006, 83:1024

    15. [15]

      [15] Zhang M L, Ji S F, Hu L H, Yin F X, Li C Y, Liu H. Chin J Catal (张美丽, 季生福, 胡林华, 银凤翔, 李成岳, 刘辉. 催化学报), 2006, 27: 777

    16. [16]

      [16] Albarazi A, Beaunier P, DaCosta P. Int J Hydrogen Energy, 2013, 38: 217

    17. [17]

      [17] Liu D P, Quek X Y, Cheo W N E, Lau R, Borgna A, Yang Y H. J Catal, 2009, 266: 380

    18. [18]

      [18] Liu H M, Li Y M, Wu H, Takayama H, Miyake T, He D H. Catal Commun, 2012, 28: 168

    19. [19]

      [19] Zhou W, He D H. Green Chem, 2009, 11: 1146

    20. [20]

      [20] Dong W S, Roh H S, Jun K W, Park S E, Oh Y S. Appl Catal A, 2002, 226: 63

    21. [21]

      [21] Szejtli J. Pure Appl Chem, 2004, 76: 1825

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(230)
  • Abstract views(622)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return