Citation: Panke Zhang, Jiawang Liu, Zheng Wang, Kuiling Ding. Highly enantio- and diastereoselective reductive aldol reactions catalyzed by chiral spiro bisphosphine oxides[J]. Chinese Journal of Catalysis, ;2015, 36(1): 100-105. doi: 10.1016/S1872-2067(14)60241-2 shu

Highly enantio- and diastereoselective reductive aldol reactions catalyzed by chiral spiro bisphosphine oxides

  • Corresponding author: Kuiling Ding, 
  • Received Date: 4 September 2014
    Available Online: 26 September 2014

    Fund Project: 国家重点基础研究发展计划(973计划, 2010CB833300) (973计划, 2010CB833300) 国家自然科学基金(21121062, 21232009) (21121062, 21232009)

  • A spiro bisphosphine oxide (SpinPO) was found to be an efficient chiral Lewis base catalyst in asymmetric reductive aldol reaction of enones and aldehydes in the presence of trichlorosilane as the reductant, affording a variety of β-hydroxyketones in good yields with moderate to high levels of diastereo- and enantioselectivities.
  • 加载中
    1. [1]

      [1] Nishiyama H, Shiomi T. Top Curr Chem, 2007, 279: 105

    2. [2]

      [2] Revis A, Hilty T K. Tetrahedron Lett, 1987, 28: 4809

    3. [3]

      [3] Matsuda I, Takahashi K, Sato S. Tetrahedron Lett, 1990, 31: 5331

    4. [4]

      [4] Isayama S, Mukaiyama T. Chem Lett, 1989: 2005

    5. [5]

      [5] Chiu P, Leung S K. Chem Commun, 2004: 2308

    6. [6]

      [6] Welle A, Diez-Gonzalez S, Tinant B, Nolan S P, Riant O. Org Lett, 2006, 8: 6059

    7. [7]

      [7] Chrovian C C, Montgomery J. Org Lett, 2007, 9: 537

    8. [8]

      [8] Miura K, Yamada Y, Tomita M, Hosomi A. Synlett, 2004: 1985

    9. [9]

      [9] Shibata I, Kato H, Ishida T, Yasuda M, Baba A. Angew Chem Int Ed, 2004, 43: 711

    10. [10]

      [10] Shibata I, Tsunoi S, Sakabe K, Miyamoto S, Kato H, Nakajima H, Yasuda M, Baba A. Chem Eur J, 2010, 16: 13335

    11. [11]

      [11] Taylor S J, Morken J P. J Am Chem Soc, 1999, 121: 12202

    12. [12]

      [12] Jang H Y, Krische M J. Acc Chem Res, 2004, 37: 653

    13. [13]

      [13] Lam H W, Joensuu P M, Murray G J, Fordyce E A F, Prieto O, Luebbers T. Org Lett, 2006, 8: 3729

    14. [14]

      [14] Taylor S J, Duffey M O, Morken J P. J Am Chem Soc, 2000, 122: 4528

    15. [15]

      [15] Zhao C X, Duffey M O, Taylor S J, Morken J P. Org Lett, 2001, 3: 1829

    16. [16]

      [16] Russell A E, Fuller N O, Taylor S J, Aurriset P, Morken J P. Org Lett, 2004, 6: 2309

    17. [17]

      [17] Fuller N O, Morken J P. Synlett, 2005, 1459

    18. [18]

      [18] Nishiyama H, Shiomi T, Tsuchiya Y, Matsuda I. J Am Chem Soc, 2005, 127: 6972

    19. [19]

      [19] Shiomi T, Nishiyama H. Org Lett, 2007, 9: 1651

    20. [20]

      [20] Shiomi T, Adachi T, Ito J, Nishiyama H. Org Lett, 2009, 11: 1011

    21. [21]

      [21] Yang Y F, Shi T, Zhang X H, Tang Z X, Wen Z Y, Quan J M, Wu Y D. Org Biomol Chem, 2011, 9: 5845

    22. [22]

      [22] Lam H W, Joensuu P M. Org Lett, 2005, 7: 4225

    23. [23]

      [23] Chuzel O, Deschamp J, Chausteur C, Riant O. Org Lett, 2006, 8: 5943

    24. [24]

      [24] Deschamp J, Chuzel O, Hannedouche J, Riant O. Angew Chem Int Ed, 2006, 45: 1292

    25. [25]

      [25] Zhao D B, Oisaki K, Kanai M, Shibasaki M. J Am Chem Soc, 2006, 128: 14440

    26. [26]

      [26] Lipshutz B H, Amorelli B, Unger J B. J Am Chem Soc, 2008, 130: 14378

    27. [27]

      [27] Kato M, Oki H, Ogata K, Fukuzawa S. Synlett, 2009: 1299

    28. [28]

      [28] Deschamp J, Hermant T, Riant O. Tetrahedron, 2012, 68: 3457

    29. [29]

      [29] Ou J, Wong W T, Chiu P. Org Biomol Chem, 2012, 10: 5971

    30. [30]

      [30] Sugiura M, Sato N, Kotani S, Nakajima M. Chem Commun, 2008: 4309

    31. [31]

      [31] Sugiura M, Sato N, Sonoda Y, Kotani S, Nakajima M. Chem Asian J, 2010, 5: 478

    32. [32]

      [32] Ohmaru Y, Sato N, Mizutani M, Kotani S, Sugiura M, Nakajima M. Org Biomol Chem, 2012, 10: 4562

    33. [33]

      [33] Osakama K, Sugiura M, Nakajima M, Kotani S. Tetrahedron Lett, 2012, 53: 4199

    34. [34]

      [34] Denmark S E, Beutner G L. Angew Chem Int Ed, 2008, 47: 1560

    35. [35]

      [35] Beutner G L, Denmark S E. Angew Chem Int Ed, 2013, 52: 9086

    36. [36]

      [36] Han Z B, Wang Z, Zhang X M, Ding K L. Sci Sin Chin (韩召斌, 王正, 张绪穆, 丁奎岭. 中国科学: 化学), 2010, 40: 950

    37. [37]

      [37] Ding K L, Han Z B, Wang Z. Chem Asian J, 2009, 4: 32

    38. [38]

      [38] Han Z B, Wang Z, Zhang X M, Ding K L. Angew Chem Int Ed, 2009, 48: 5345

    39. [39]

      [39] Han Z B, Wang Z, Zhang X M, Ding K L. Tetrahedron: Asymmetry, 2010, 21: 1529

    40. [40]

      [40] Han Z B, Wang Z, Zhang X M, Ding K L. Chin Sci Bull, 2010, 55: 2840

    41. [41]

      [41] Zhang Y, Han Z B, Li F Y, Ding K L, Zhang A. Chem Commun, 2010, 46: 156

    42. [42]

      [42] Han Z B, Wang Z, Ding K L. Adv Synth Catal, 2011, 353: 1584

    43. [43]

      [43] Shang J, Han Z B, Li Y, Wang Z, Ding K L. Chem Commun, 2012, 48: 5172

    44. [44]

      [44] Liu X, Han Z B, Wang Z, Ding K L. Acta Chim Sin (刘旭, 韩召斌, 王正, 丁奎岭. 化学学报), 2014, 72: 849

    45. [45]

      [45] Liu X, Han Z B, Wang, Z, Ding K L. Sci China Chem, 2014, 57: 1073

    46. [46]

      [46] Liu X, Han Z B, Wang Z, Ding K L. Angew Chem Int Ed, 2014, 53: 1978

    47. [47]

      [47] Xie J H, Zhou Q L. Acta Chim Sin (谢建华, 周其林. 化学学报), 2014, 72: 778

    48. [48]

      [48] Zhang P K, Han Z B, Wang Z, Ding K L. Angew Chem Int Ed, 2013, 52: 11054

    49. [49]

      [49] Denmark S E, Winter S B D, Su X P, Wong K T. J Am Chem Soc, 1996, 118: 7404

    50. [50]

      [50] Denmark S E, Stavenger R A, Winter S B D, Wong K T, Barsanti P A. J Org Chem, 1998, 63: 9517

    51. [51]

      [51] Denmark S E, Pham S M, Stavenger R A, Su X P, Wong K T, Nishigaichi Y. J Org Chem, 2006, 71: 3904

    52. [52]

      [52] Denmark S E, Eklov B M, Yao P J, Eastgate M D. J Am Chem Soc, 2009, 131: 11770

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(159)
  • Abstract views(375)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return