Citation: Jing Zhang, Teng Li, Dongjiang Wang, Jialiang Zhang, Hongchen Guo. The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge[J]. Chinese Journal of Catalysis, ;2015, 36(3): 274-282. doi: 10.1016/S1872-2067(14)60239-4 shu

The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge

  • Corresponding author: Hongchen Guo, 
  • Received Date: 17 August 2014
    Available Online: 12 October 2014

  • The catalytic effect of H2 in the one-step synthesis of ethylene glycol (EG) from methanol dehydrogenation coupling reaction using dielectric barrier discharge (DBD) was studied by in-situ optical emission spectroscopy and online chromatographic analysis. The influence of discharge frequency, methanol and H2 flow rates as well as reaction pressure was investigated systematically. Results show that, in the non-equilibrium plasma produced by DBD, H2 dramatically improved not only the conversion of methanol but also the selectivity for EG. Using the reaction conditions of 300 ℃, 0.1 MPa, input power 11 W, discharge frequency 12.0 kHz, methanol gas flow rate 11.0 mL/min, and H2 flow rate 80-180 mL/min, the reaction of the CH3OH/H2 DBD plasma gave a methanol conversion close to 30% and a selectivity for EG of more than 75%. The change of the EG yield correlated with the intensity of the Hαspectral line. H atoms appear to be the catalytically active species in the reaction. In the DBD plasma, the stable ground state H2 molecule undergoes cumulative collision excitation with electrons before transitioning from higher energy excited states to the first excited state. The spontaneous dissociation of the first excited state H2 molecules generates the catalytically ac-tive H atom. The discharge reaction condition affects the catalytic performance of H2 by influencing the dissociation of H2 molecules into H atoms. The catalytic effect of H2 exhibited in the non-equilibrium plasma may be a new opportunity for the synthesis of chemicals.
  • 加载中
    1. [1]

      [1] Yue H R, Zhao Y J, Ma X B, Gong J L. Chem Soc Rev, 2012, 41: 4218

    2. [2]

      [2] Wen C, Li F Q, Cui Y Y, Dai W L, Fan K N. Catal Today, 2014, 233: 117

    3. [3]

      [3] Ma X B, Chi H W, Yue H R, Zhao Y J, Xu Y, Lü J, Wang S P, Gong J L. AIChE J, 2013, 59: 2530

    4. [4]

      [4] Song H Y, Jin R H, Kang M R, Chen J. Chin J Catal (宋河远, 靳荣华, 康美荣, 陈静. 催化学报), 2013, 34: 1035

    5. [5]

      [5] Chen Q L, Yang W M, Teng J W. Chin J Catal (陈庆龄, 杨为民, 腾加伟. 催化学报), 2013, 34: 217

    6. [6]

      [6] Zhang J, Yuan Q C, Zhang J L, Li T, Guo H C. Chem Commun, 2013, 49: 10106

    7. [7]

      [7] Bauschlicher C W J, Langhoff S R, Walch S P. J Chem Phys, 1992, 96: 450

    8. [8]

      [8] Futamura S, Kabashima H. IEEE Trans Ind Appl, 2004, 40: 1459

    9. [9]

      [9] Yan Z C, Li C, Lin W H. Int J Hydrog Energy, 2009, 34: 48

    10. [10]

      [10] Burlica R, Shih K Y, Hnatiuc B, Locke B R. Ind Eng Chem Res, 2011, 50: 9466

    11. [11]

      [11] Rico V J, Hueso J L, Cotrino J, Gallardo V, Sarmiento B, Brey J J, Gonzalez-Elipe A R. Chem Commun, 2009: 6192

    12. [12]

      [12] Rico V J, Hueso J L, Cotrino J, Gonzalez- Elipe A R. J Phys Chem A, 2010, 114: 4009

    13. [13]

      [13] Wang B W, Zhang X, Bai H Y, Lü Y J, Hu S H. Front Chem Sci Eng, 2011, 5: 209

    14. [14]

      [14] Lü Y J, Yan W J, Hu S H, Wang B W. J Fuel Chem Technol (吕一军, 闫文娟, 胡爽慧, 王保伟. 燃料化学学报), 2012, 40: 698

    15. [15]

      [15] Wang Y F, You Y S, Tsai C H, Wang L C. Int J Hydrog Energy, 2010, 35: 9637

    16. [16]

      [16] Lee D H, Kim T. Int J Hydrog Energy, 2013, 38: 6039

    17. [17]

      [17] Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias F M, Ferreira C M. Int J Hydrog Energy, 2013, 38: 9145

    18. [18]

      [18] Li H Q, Zou J J, Zhang Y P, Liu C J. J Chem Ind Eng (China) (李慧青, 邹吉军, 张月萍, 刘昌俊. 化工学报), 2004, 55: 1989

    19. [19]

      [19] Li H Q, Zou J J, Zhang Y P, Liu C J. Chem Lett, 2004, 33: 744

    20. [20]

      [20] Fantz U, Schalk B, Behringer K. New J Phys, 2000, 2: 71

    21. [21]

      [21] Petrovic Z L, Phelps A V. Phys Rev E, 2009, 80: 016408/1

    22. [22]

      [22] Worsley M A, Bent S F, Fuller N C M, Dalton T. J Appl Phys, 2006, 100: 083301/1

    23. [23]

      [23] Liu X M, Johnson P V, Malone C P, Young J A, Kanik I, Shemansky D E. Astrophys J, 2010,716: 701

    24. [24]

      [24] Lendvay G, Berces T, Marta F. J Phys Chem A, 1997, 101: 1588

    25. [25]

      [25] Chuang Y Y, Radhakrishnan M L, Fast P L, Cramer C J, Truhlar D G. J Phys Chem A, 1999, 103: 4893

    26. [26]

      [26] Han Y, Wang J G, Cheng D G, Liu C J. Ind Eng Chem Res, 2006, 45: 3460

    27. [27]

      [27] Horacek J, Cizek M, Houfek K, Kolorenc P, Domcke W. Phys Rev A, 2006, 73: 022701/1

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    10. [10]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(219)
  • Abstract views(470)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return