Citation: Yanjuan Cui. In-situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties[J]. Chinese Journal of Catalysis, ;2015, 36(3): 372-379. doi: 10.1016/S1872-2067(14)60237-0 shu

In-situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties

  • Corresponding author: Yanjuan Cui, 
  • Received Date: 31 August 2014
    Available Online: 8 October 2014

    Fund Project: 江苏省自然科学基金(BK20140507). (BK20140507)

  • A hybrid semiconductor composed of a carbon nitride/cadmium sulfide nanocomposite (C3N4/CdS) was synthesized by a template-free one-step calcination route at high temperature using ammonium thiocyanate and cadmium chloride as starting materials. The crystal structure, composition and morphology of the hybrid samples were studied by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The photocatalytic degradation of Rhodamine B as a model compound was carried out to evaluate the photocatalytic activity of the nanocomposites under visible light irradiation. Hexagonal CdS nanocrystals were uniformly distributed in the bulk C3N4. After coupling with CdS the basic C3N4 structure was mostly unchanged. The visible light absorption properties of the hybrid materials were enhanced. The as-prepared C3N4/CdS hybrid photocatalyst exhibited superior degradation performance under visible light irradiation compared with pure C3N4. The well-matched band energy improved the transfer efficiency of the photoinduced carriers and this was responsible for the enhanced photocatalytic activity and stability of the hybrid photocatalysts.
  • 加载中
    1. [1]

      [1] Wang X C, Maeda K, Chen X F, TakaNabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. J Am Chem Soc, 2009, 131: 1680

    2. [2]

      [2] Fischer A, Antonietti M, Thomas A. Adv Mater, 2007, 19: 264

    3. [3]

      [3] Kim M, Hwang S, Yu J S. J Mater Chem, 2007, 17: 1656

    4. [4]

      [4] Park S S, Chu S W, Xue C F, Zhao D Y, Ha C S. J Mater Chem, 2011, 21: 10801

    5. [5]

      [5] Lee E Z, Jun Y S, Hong W H, Thomas A, Jin M M. Angew Chem Int Ed, 2010, 49: 9706

    6. [6]

      [6] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew Chem Int Ed, 2006, 45: 4467

    7. [7]

      [7] Wang Y, Wang X C, Antonietti M. Angew Chem Int Ed,2012, 51: 68

    8. [8]

      [8] Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z. Energy Environ Sci, 2012, 5: 6717

    9. [9]

      [9] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Sci, 2012, 3: 443

    10. [10]

      [10] Cao S W, Yu J G. J Phys Chem Lett, 2014, 5: 2101

    11. [11]

      [11] Yan S C, Li Z S, Zou Z G. Langmuir, 2010, 26: 3894

    12. [12]

      [12] Lee S C, Lintang H O, Yuliati L. Chem Asian J, 2012, 7: 2139

    13. [13]

      [13] Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M. J Am Chem Soc, 2013, 135: 7118

    14. [14]

      [14] Li X H, Antonietti M. Chem Soc Rev, 2013, 42: 6593

    15. [15]

      [15] Ye X J, Cui Y J, Wang X C. ChemSusChem, 2014, 7: 738

    16. [16]

      [16] Zhang Y J, Mori T, Ye J H, Antoniett M. J Am Chem Soc, 2010, 132: 6294

    17. [17]

      [17] Wang W J, Yu J C, Xia D H, Wong P K, Li Y C. Environ Sci Technol, 2013, 47: 8724

    18. [18]

      [18] Pan C S, Xu J, Wang Y J, Li D, Zhu Y F. Adv Funct Mater, 2012, 22: 1518

    19. [19]

      [19] Yu J G, Wang S H, Low J X, Xiao W. Phys Chem Chem Phys, 2013, 15: 16883

    20. [20]

      [20] Sun J X, Yuan Y P, Qiu L G, Jiang X, Xie A J, Shen Y H, Zhu J F. Dalton Trans, 2012, 41: 6756

    21. [21]

      [21] Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. J Mater Chem, 2012, 22: 21159

    22. [22]

      [22] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal(沈凯, Gondal M A, Siddique R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78

    23. [23]

      [23] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636

    24. [24]

      [24] Hirai T, Bando Y, Komasawa I. J Phys Chem B, 2002, 106: 8967

    25. [25]

      [25] Tang Z R, Yin X, Zhang Y H, Xu Y J. Inorg Chem, 2013, 52: 11758

    26. [26]

      [26] Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. J Phys Chem C, 2010, 114: 1963

    27. [27]

      [27] Ge L, Zuo F, Liu J K, Ma Q, Wang C, Sun D Z, Bartels L, Feng P Y. J Phys Chem C, 2012, 116: 13708

    28. [28]

      [28] Fu J, Chang B B, Tian Y L, Xi F N, Dong X P. J Mater Chem A, 2013, 1: 3083

    29. [29]

      [29] Cui Y J, Zhang J S, Zhang G G, Huang J H, Liu P, Antonietti M, Wang X C. J Mater Chem, 2011, 21: 13032

    30. [30]

      [30] Cui Y J, Huang J H, Fu X Z, Wang X C. Catal Sci Technol, 2012, 2: 1396

    31. [31]

      [31] Lotsch B V, Schnick W. Chem Mater, 2006, 18: 1891

    32. [32]

      [32] Lyth S M, Nabae Y, Moriya S, Kuroki S, Kakimoto M, Ozaki J, Miyata S. J Phys Chem C, 2009, 113: 20148

    33. [33]

      [33] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J Mater Chem, 2011, 21: 14398

    34. [34]

      [34] Foy D, Demazeau G, Florian P, Massiot D, Labrugere C, Goglio G. J Solid State Chem, 2009, 182: 165

    35. [35]

      [35] Cao S W, Yuan Y P, Fang J, Shahjamali M M, Boey F Y C, Barber J, Loo S C J, Xun C. Int J Hydrogen Energy, 2013, 38, 1258

    36. [36]

      [36] Bao N Z, Shen L M, Takata T, Domen K. Chem Mater, 2008, 20: 110

    37. [37]

      [37] Jiang D W, Zhou T S, Sun Q, Yu Y Y, Shi G Y, Jin L T. Chin J Chem, 2011, 29: 2505

    38. [38]

      [38] Chen X F, Jun Y S, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem Mater, 2009, 21, 4093

    39. [39]

      [39] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew Chem Int Ed, 2010, 49: 441

    40. [40]

      [40] Zhang J S, Zhang M W, Sun R Q, Wang X C. Angew Chem Int Ed, 2012, 51: 10145

    41. [41]

      [41] Zhang G G, Zhang M W, Ye X X, Qiu X Q, Lin S, Wang X C. Adv Mater, 2014, 26: 805

    42. [42]

      [42] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys Chem Chem Phys, 2012, 14: 1455

  • 加载中
    1. [1]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(193)
  • Abstract views(515)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return