Citation: Zhengbao Wang, Qi Zhang, Xiaofei Lu, Shuangjia Chen, Chunjie Liu. Ru-Zn catalysts for selective hydrogenation of benzene using coprecipitation in low alkalinity[J]. Chinese Journal of Catalysis, ;2015, 36(3): 400-407. doi: 10.1016/S1872-2067(14)60231-X shu

Ru-Zn catalysts for selective hydrogenation of benzene using coprecipitation in low alkalinity

  • Corresponding author: Zhengbao Wang, 
  • Received Date: 22 August 2014
    Available Online: 24 September 2014

    Fund Project: 国家自然科学基金(U1162129). (U1162129)

  • Several unsupported Ru-Zn catalysts were successfully prepared using the coprecipitation method under low alkaline conditions, and their catalytic performance was evaluated for the selective liquid-phase hydrogenation of benzene. The effect of the amount of ZnCl2 added to the coprecipitation solution on the physical and catalytic properties of the Ru-Zn catalysts was studied whilst keeping the amount of the NaOH precipitant constant. The properties of the resulting catalysts were characterized by N2 adsorption, X-ray diffraction, and temperature-programmed reduction. The effects of the stirring rate and the amount of ZnSO4 additive on the catalytic properties of the Ru-Zn catalysts were investigated using the optimal Zn content. The recyclability of the optimal Ru-Zn catalyst was also explored. The results revealed that the optimal Zn content for the Ru-Zn catalysts was 16.7 wt%, and the selectivity for cyclohexene could reach up to 80% (yield > 45%) when the benzene conversion was 57% in an aqueous solution of ZnSO4 (0.45 mol/L) under the optimal reaction conditions (i.e., hastelloy reactor, 1200 r/min, 150 ℃ and 5 MPa of H2 pressure). The presence of ZnO crystals in the Ru catalysts was found to be critical to obtaining high selectivity for cyclohexene (>80%). The Ru-Zn catalysts prepared under the low alkaline conditions also showed good stability, which indicates that they could potentially be used for industrial application.
  • 加载中
    1. [1]

      [1] Hartog F, Zwietering P. J Catal, 1963, 2: 79

    2. [2]

      [2] Drinkard W C Jr. NL Patent 7 205 832. 1972

    3. [3]

      [3] Odenbrand C U I, Lundin S T. J Chem Technol Biotechnol, 1980, 30: 677

    4. [4]

      [4] Odenbrand C U I, Lundin S T. J Chem Technol Biotechnol, 1981, 31: 660

    5. [5]

      [5] Mitsui O, Fukuoka Y. US Patent 4 678 861. 1987

    6. [6]

      [6] Nagahara H, Konishi M. EP Patent 220 525. 1987

    7. [7]

      [7] Matsunaga F, Fukuhara H, Yasuhara M. EP Patent 316 142. 1989

    8. [8]

      [8] Nagahara H, Konishi M. US Patent 4 734 536. 1988

    9. [9]

      [9] Fukuhara H, Matsunaga F, Nakashima Y. EP Patent 323 192. 1989

    10. [10]

      [10] Fukuoka Y, Kono M, Nagahara H, Ono M. J Chem Soc Jpn, 1990: 1223

    11. [11]

      [11] Nagahara H, Ono M, Konishi M, Fukuoka Y. Appl Surf Sci, 1997, 121-122: 448

    12. [12]

      [12] Struijk J, Scholten J J F. Appl Catal A, 1992, 82: 277

    13. [13]

      [13] Struijk J, d'Angremond M, Lucas-de Regt W J M, Scholten J J F. Appl Catal A, 1992, 83: 263

    14. [14]

      [14] Struijk J, Moene R, Van der Kamp T, Scholten J J F. Appl Catal A, 1992, 89: 77

    15. [15]

      [15] Milone C, Neri G, Donato A, Musolino M G, Mercadante L. J Catal, 1996, 159: 253

    16. [16]

      [16] Liu S C, Liu Z Y, Zhao S H, Wu Y M, Wang Z, Yuan P. J Nat Gas Chem, 2006, 15: 319

    17. [17]

      [17] Qin H A, Huang Z X, Liu S C. J Xinyang Normal Univ(Nat Sci Ed) (秦会安, 黄振旭, 刘寿长. 信阳师范学院学报(自然科学版)), 2007, 20: 350

    18. [18]

      [18] Liu Z Y, Sun H J, Wang D B, Guo W, Zhou X L, Liu S C, Li Z J. Chin J Catal(刘仲毅, 孙海杰, 王栋斌, 郭伟, 周小莉, 刘寿长, 李中军. 催化学报), 2010, 31: 150

    19. [19]

      [19] Sun H J, Guo W, Zhou X L, Chen Z H, Liu Z Y, Liu S C. Chin J Catal(孙海杰, 郭伟, 周小莉, 陈志浩, 刘仲毅, 刘寿长. 催化学报), 2011, 32: 1

    20. [20]

      [20] Sun H J, Zhang X D, Chen Z H, Zhou X L, Guo W, Liu Z Y, Liu S C. Chin J Catal(孙海杰, 张旭东, 陈志浩, 周小莉, 郭伟, 刘仲毅, 刘寿长. 催化学报), 2011, 32: 224

    21. [21]

      [21] Sun H J, Jiang H B, Li S H, Dong Y Y, Wang H X, Pan Y J, Liu S C, Tang M S, Liu Z Y. Chem Eng J, 2013, 218: 415

    22. [22]

      [22] Sun H J, Wang H X, Jiang H B, Li S H, Liu S C, Liu Z Y, Yuan X M, Yang K J. Appl Catal A, 2013, 450: 160

    23. [23]

      [23] Sun H J, Pan Y J, Jiang H B, Li S H, Zhang Y X, Liu S C, Liu Z Y. Appl Catal A, 2013, 464-465: 1

    24. [24]

      [24] Sun H J, Jiang H B, Li S H, Wang H X, Pan Y J, Dong Y Y, Liu S C, Liu Z Y. Chin J Catal(孙海杰, 江厚兵, 李帅辉, 王红霞, 潘雅洁, 董英英, 刘寿长, 刘仲毅. 催化学报), 2013, 34: 684

    25. [25]

      [25] Wang J Q, Wang Y Z, Xie S H, Qiao M H, Li H X, Fan K N. Appl Catal A, 2004, 272: 29

    26. [26]

      [26] Liu S C, Liu Z Y, Wang Z, Wu Y M, Yuan P. Chem Eng J, 2008, 139: 157

    27. [27]

      [27] Zhao Y J, Zhou J, Zhang J G, Wang S D. J Mol Catal A, 2009, 309: 35

    28. [28]

      [28] Liu J L, Zhu L J, Pei Y, Zhuang J H, Li H, Li H X, Qiao M H, Fan K N. Appl Catal A, 2009, 353: 282

    29. [29]

      [29] Wang W T, Liu H Z, Wu T B, Zhang P, Ding G D, Liang S G, Jiang T, Han B X. J Mol Catal A, 2012, 355: 174

    30. [30]

      [30] Zhou G B, Tan X H, Pei Y, Fan K N, Qiao M H, Sun B, Zong B N. ChemCatChem, 2013, 5: 2425

    31. [31]

      [31] Zhang P, Wu T B, Jiang T, Wang W T, Liu H Z, Fan H L, Zhang Z F, Han B X. Green Chem, 2013, 15: 152

    32. [32]

      [32] Sun H J, Li S H, Zhang Y X, Jiang H B, Qu L L, Liu S C, Liu Z Y. Chin J Catal (孙海杰, 李帅辉, 张元馨, 江厚兵, 曲良龙, 刘寿长, 刘仲毅. 催化学报), 2013, 34: 1482

    33. [33]

      [33] Wang M H, Su H J, Zhou J, Wang S D. Chin J Catal(王铭浩, 苏宏久, 周谨, 王树东. 催化学报), 2013, 34: 1543

    34. [34]

      [34] Liu S C, Liu Z Y, Luo G, Han M L. Petrochem Technol (刘寿长, 刘仲毅, 罗鸽, 韩民乐. 石油化工), 2002, 31: 720

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(80)
  • Abstract views(848)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return