Citation: Zhijuan Zou, Hao Cheng, Jingyu Wang, Xijiang Han. Pyrolyzed titanium dioxide/polyaniline as an efficient non-noble metal electrocatalyst for oxygen reduction reaction[J]. Chinese Journal of Catalysis, ;2015, 36(3): 414-424. doi: 10.1016/S1872-2067(14)60223-0 shu

Pyrolyzed titanium dioxide/polyaniline as an efficient non-noble metal electrocatalyst for oxygen reduction reaction

  • Corresponding author: Jingyu Wang,  Xijiang Han, 
  • Received Date: 13 July 2014
    Available Online: 4 September 2014

    Fund Project: 国家自然科学基金(21001037, 21071037, 91122002) (21001037, 21071037, 91122002) 哈尔滨技术创新人才专项基金(2013RFLXJ011) (2013RFLXJ011) 华中科技大学引进人才科研基金(2014036). (2014036)

  • To overcome the prohibitive cost and poor durability of conventional Pt-based catalysts, TiO2/C was prepared by pyrolyzing a novel titanium dioxide/polyaniline (TiO2/PANI) composite. The prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, cyclic voltammetry (CV), and linear sweep voltammetry. Interaction between PANI and TiO2 was found to inhibit the aggregation of TiO2 and its transformation from anatase to rutile. The catalytic activity of the TiO2/C first increased with increasing PANI content and then decreased; the optimum was achieved when the PANI/TiO2 mass ratio was 35/100. CV and i-t curves showed that the prepared composite has a good catalytic stability.
  • 加载中
    1. [1]

      [1] Chisaka M, Ishihara A, Suito K, Ota K, Muramoto K. Electrochim Acta, 2013, 88: 697

    2. [2]

      [2] Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K, Matsumoto M, Imai H. J Electrochem Soc, 2013, 160: F162

    3. [3]

      [3] Sarada B Y, Dhathathreyan K S, Krishna M R. Int J Hydrogen Energy, 2011, 36: 11886

    4. [4]

      [4] Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K. J Electrochem Soc, 2010, 157: B885

    5. [5]

      [5] Takasu Y, Suzuki M, Yang H S, Ohashi T, Sugimoto W. Electrochim Acta, 2010, 55: 8220

    6. [6]

      [6] Ota K, Ohgi Y, Nam K D, Matsuzawa K, Mitsushima S, Ishihara A. J Power Sources, 2011, 196: 5256

    7. [7]

      [7] Seo J, Zhao L, Cha D, Takanabe K, Katayama M, Kubota J, Domen K. J Phys Chem C, 2013, 117: 11635

    8. [8]

      [8] Awaludin Z, Suzuki M, Masud J, Okajima T, Ohsaka T. J Phys Chem C, 2011, 115: 25557

    9. [9]

      [9] Ishihara A, Tamura M, Matsuzawa K, Mitsushima S, Ota K. Electrochim Acta, 2010, 55: 7581

    10. [10]

      [10] Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K, Matsumoto M, Imai H. Electrochim Acta, 2012, 68: 192

    11. [11]

      [11] Chisaka M, Iijima T, Yaguchi T, Sakurai Y. Electrochim Acta, 2011, 56: 4581

    12. [12]

      [12] Chisaka M, Suzuki Y, Iijima T, Sakurai Y. J Phy Chem C, 2011, 115: 20610

    13. [13]

      [13] Chisaka M, Suzuki Y, Iijima T, Ishihara Y, Inada R, Sakurai Y. ECS Electrochem Lett, 2012, 1: F4

    14. [14]

      [14] Jing M J, Wang Y, Qian J J, Zhang M, Yang J J. Chin J Catal (景明俊, 王岩, 钱俊杰, 张敏, 杨建军. 催化学报), 2012, 33: 550

    15. [15]

      [15] Jiang H Q, Wang Q F, Li S Y, Li J S, Wang Q Y. Chin J Catal (姜洪泉, 王巧凤, 李世洋, 李井申, 王庆元. 催化学报), 2014, 35: 1068

    16. [16]

      [16] Li X G, Liu C P, Xing W, Lu T H. J Power Sources, 2009, 193: 470

    17. [17]

      [17] Selvarani G, Maheswari S, Sridhar P, Pitchumani S, Shukla A K. J Electrochem Soc, 2009, 156: B1354

    18. [18]

      [18] Jasin D, Abu-Rabi A, Mentus S, Jovanovic D. Electrochim Acta, 2007, 52: 4581

    19. [19]

      [19] Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K. J Electrochem Soc, 2011, 158: C329

    20. [20]

      [20] Zhang H, Zhang J M, Xiao Q F. Chin J Power Sources (张浩, 张建民, 肖庆峰. 电源技术), 2007, 31: 551

    21. [21]

      [21] Dam D T, Nam K D, Song H, Wang X, Lee J M. Int J Hydrogen Energy, 2012, 37: 15135

    22. [22]

      [22] Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A J, Zhang W M, Zhu Z H, Smith S C, Jaroniec M, Lu G Q, Qiao S Z. J Am Chem Soc, 2011, 133: 20116

    23. [23]

      [23] Yi B L. Fuel Cells: Mechanism, Technology, Application. Beijing: Chem Ind Press (衣宝廉. 燃料电池——原理·技术·应用. 北京: 化学工业出版社), 2004

    24. [24]

      [24] Gu L A, Wang J Y, Qi R, Wang X Y, Xu P, Han X J. J Mol Catal A, 2012, 357: 19

    25. [25]

      [25] Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443

    26. [26]

      [26] Lin Z Y, Waller G H, Liu Y, Liu M L, Wong C P. Carbon, 2013, 53: 130

    27. [27]

      [27] Zhang N, Zhang S, Zhu T, Yin G P. Progr Chem (张娜, 张生, 朱彤, 尹鸽平. 化学进展), 2011, 23: 2240

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(469)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return