Citation:
Zhijuan Zou, Hao Cheng, Jingyu Wang, Xijiang Han. Pyrolyzed titanium dioxide/polyaniline as an efficient non-noble metal electrocatalyst for oxygen reduction reaction[J]. Chinese Journal of Catalysis,
;2015, 36(3): 414-424.
doi:
10.1016/S1872-2067(14)60223-0
-
To overcome the prohibitive cost and poor durability of conventional Pt-based catalysts, TiO2/C was prepared by pyrolyzing a novel titanium dioxide/polyaniline (TiO2/PANI) composite. The prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, cyclic voltammetry (CV), and linear sweep voltammetry. Interaction between PANI and TiO2 was found to inhibit the aggregation of TiO2 and its transformation from anatase to rutile. The catalytic activity of the TiO2/C first increased with increasing PANI content and then decreased; the optimum was achieved when the PANI/TiO2 mass ratio was 35/100. CV and i-t curves showed that the prepared composite has a good catalytic stability.
-
Keywords:
- Polyaniline,
- Titania,
- Pyrolyzation,
- Cathode catalyst,
- Oxygen reduction reaction
-
-
-
[1]
[1] Chisaka M, Ishihara A, Suito K, Ota K, Muramoto K. Electrochim Acta, 2013, 88: 697
-
[2]
[2] Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K, Matsumoto M, Imai H. J Electrochem Soc, 2013, 160: F162
-
[3]
[3] Sarada B Y, Dhathathreyan K S, Krishna M R. Int J Hydrogen Energy, 2011, 36: 11886
-
[4]
[4] Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K. J Electrochem Soc, 2010, 157: B885
-
[5]
[5] Takasu Y, Suzuki M, Yang H S, Ohashi T, Sugimoto W. Electrochim Acta, 2010, 55: 8220
-
[6]
[6] Ota K, Ohgi Y, Nam K D, Matsuzawa K, Mitsushima S, Ishihara A. J Power Sources, 2011, 196: 5256
-
[7]
[7] Seo J, Zhao L, Cha D, Takanabe K, Katayama M, Kubota J, Domen K. J Phys Chem C, 2013, 117: 11635
-
[8]
[8] Awaludin Z, Suzuki M, Masud J, Okajima T, Ohsaka T. J Phys Chem C, 2011, 115: 25557
-
[9]
[9] Ishihara A, Tamura M, Matsuzawa K, Mitsushima S, Ota K. Electrochim Acta, 2010, 55: 7581
-
[10]
[10] Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K, Matsumoto M, Imai H. Electrochim Acta, 2012, 68: 192
-
[11]
[11] Chisaka M, Iijima T, Yaguchi T, Sakurai Y. Electrochim Acta, 2011, 56: 4581
-
[12]
[12] Chisaka M, Suzuki Y, Iijima T, Sakurai Y. J Phy Chem C, 2011, 115: 20610
-
[13]
[13] Chisaka M, Suzuki Y, Iijima T, Ishihara Y, Inada R, Sakurai Y. ECS Electrochem Lett, 2012, 1: F4
-
[14]
[14] Jing M J, Wang Y, Qian J J, Zhang M, Yang J J. Chin J Catal (景明俊, 王岩, 钱俊杰, 张敏, 杨建军. 催化学报), 2012, 33: 550
-
[15]
[15] Jiang H Q, Wang Q F, Li S Y, Li J S, Wang Q Y. Chin J Catal (姜洪泉, 王巧凤, 李世洋, 李井申, 王庆元. 催化学报), 2014, 35: 1068
-
[16]
[16] Li X G, Liu C P, Xing W, Lu T H. J Power Sources, 2009, 193: 470
-
[17]
[17] Selvarani G, Maheswari S, Sridhar P, Pitchumani S, Shukla A K. J Electrochem Soc, 2009, 156: B1354
-
[18]
[18] Jasin D, Abu-Rabi A, Mentus S, Jovanovic D. Electrochim Acta, 2007, 52: 4581
-
[19]
[19] Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K. J Electrochem Soc, 2011, 158: C329
-
[20]
[20] Zhang H, Zhang J M, Xiao Q F. Chin J Power Sources (张浩, 张建民, 肖庆峰. 电源技术), 2007, 31: 551
-
[21]
[21] Dam D T, Nam K D, Song H, Wang X, Lee J M. Int J Hydrogen Energy, 2012, 37: 15135
-
[22]
[22] Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A J, Zhang W M, Zhu Z H, Smith S C, Jaroniec M, Lu G Q, Qiao S Z. J Am Chem Soc, 2011, 133: 20116
-
[23]
[23] Yi B L. Fuel Cells: Mechanism, Technology, Application. Beijing: Chem Ind Press (衣宝廉. 燃料电池——原理·技术·应用. 北京: 化学工业出版社), 2004
-
[24]
[24] Gu L A, Wang J Y, Qi R, Wang X Y, Xu P, Han X J. J Mol Catal A, 2012, 357: 19
-
[25]
[25] Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443
-
[26]
[26] Lin Z Y, Waller G H, Liu Y, Liu M L, Wong C P. Carbon, 2013, 53: 130
-
[27]
[27] Zhang N, Zhang S, Zhu T, Yin G P. Progr Chem (张娜, 张生, 朱彤, 尹鸽平. 化学进展), 2011, 23: 2240
-
[1]
-
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[4]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[10]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[11]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[12]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[13]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[14]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[15]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[16]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[17]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[18]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(469)
- HTML views(11)