Citation: Tao Wu, Jingwei Wan, Xuebing Ma. Aqueous asymmetric aldol reaction catalyzed by nanomagnetic solid acid SO42-/Zr(OH)4-Fe3O4[J]. Chinese Journal of Catalysis, ;2015, 36(3): 425-431. doi: 10.1016/S1872-2067(14)60222-9 shu

Aqueous asymmetric aldol reaction catalyzed by nanomagnetic solid acid SO42-/Zr(OH)4-Fe3O4

  • Corresponding author: Xuebing Ma, 
  • Received Date: 13 July 2014
    Available Online: 2 September 2014

    Fund Project: 国家自然科学基金(21071116). (21071116)

  • Magnetic solid acid catalysts SO42-/Zr(OH)4-Fe3O4 were prepared using magnetic Fe3O4 nanoparticles, ZrOCl2·8H2O, and sulfuric acid as starting materials in the calcination temperature range 110-650 ℃. The properties of the magnetic solid acid, such as loaded SO42- content, acid distribution, surface morphology, and porous structure, were characterized. In the aqueous asymmetric aldol reaction of various benzaldehydes with strong electron-withdrawing groups (R=NO2 and CN), good to excellent catalytic performance (83%-100% yield, 86.0%-95.6% ee anti, and anti/syn=88-96/12-4) was achieved. These nanomagnetic solid acids can be quantitatively recycled from the reaction mixture using an external magnet and reused five times without significant loss of catalytic activity.
  • 加载中
    1. [1]

      [1] Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. Chem Rev, 2011, 111: 3076

    2. [2]

      [2] Adachi S, Harada T. Eur J Org Chem, 2009: 3661

    3. [3]

      [3] Markert M, Mahrwald R. Chem Eur J, 2008, 14: 40

    4. [4]

      [4] Palomo C, Oiarbide M, Garcia J M. Chem Soc Rev, 2004, 33: 65

    5. [5]

      [5] Zali A, Ghani K, Shokrolahi A, Keshavarz M H. Chin J Catal (催化学报), 2008, 29: 602

    6. [6]

      [6] Garro R, Navarro M T, Primo J, Corma A. J Catal, 2005, 233: 342

    7. [7]

      [7] Climent M J, Corma A, Fornes V, Guil-Lopez R, Iborra S. Adv Synth Catal, 2002, 344: 1090

    8. [8]

      [8] Kawal M, Onaka M, Izumi Y. Bull Chem Soc Jpn, 1988, 61: 1237

    9. [9]

      [9] Bhupathi R S, Devi B R, Dubey P K. Asian J Chem, 2011, 23: 4215

    10. [10]

      [10] Demuynck A L W, Peng L, de Clippel F, Vanderleyden J, Jacobs P A, Sels B F. Adv Synth Catal, 2011, 353: 725

    11. [11]

      [11] Polshettiwar V, Luque R, Fihri A, Zhu H B, Bouhrara M, Basset J M. Chem Rev, 2011, 111: 3036

    12. [12]

      [12] Zhang D H, Zhou C, Sun Z H, Wu L Z, Tung C H, Zhang T R. Nanoscale, 2012, 4: 6244

    13. [13]

      [13] Gawande M B, Branco P S, Varma R S. Chem Soc Rev, 2013, 42: 3371

    14. [14]

      [14] Wang P C, Zhu J, Liu X, Lu T T, Lu M. ChemPlusChem, 2013, 78: 310

    15. [15]

      [15] Koukabi N, Kolvari E, Zolfigol M A, Khazaei A, Shaghasemi B S, Fasahati B. Adv Synth Catal, 2012, 354: 2001

    16. [16]

      [16] Wang Q H, Zhao W C, Sun X H, Zhao W J. Catal Lett, 2008, 121: 324

    17. [17]

      [17] Zillillah, Tan G W, Li Z. Green Chem, 2012, 14: 3077

    18. [18]

      [18] Lai D M, Deng L, Guo Q X, Fu Y. Energy Environ Sci, 2011, 4: 3552

    19. [19]

      [19] Lai D M, Deng L, Li J, Liao B, Guo Q X, Fu Y. ChemSusChem, 2011, 4: 55

    20. [20]

      [20] Kong A G, Wang P, Zhang H Q, Yang F, Huang S P, Shan Y K. Appl Catal A, 2012, 417-418: 183

    21. [21]

      [21] Chouhan G, Wang D S, Alper H. Chem Commun, 2007: 4809

    22. [22]

      [22] Hino M, Kobayashi S, Arata K. J Am Chem Soc, 1979, 101: 6439

    23. [23]

      [23] Lei T, Hua W M, Tang Y, Yue Y H, Gao Z. Chem J Chin Univ(雷霆, 华伟明, 唐颐, 乐英红, 高滋. 高等学校化学学报), 2000, 21: 1697

    24. [24]

      [24] Hu Z J, Ling L C, Lü C X, Liu L, Zhang B J. Chin J Catal(胡子君, 凌立成, 吕春祥, 刘朗, 张碧江. 催化学报), 1998, 19: 447

    25. [25]

      [25] Chang Z, Guo C X, Duan X, Zhang M L. Chin J Catal (常铮, 郭灿雄, 段 雪, 张密林. 催化学报), 2003, 24: 47

    26. [26]

      [26] Zhang M L, Wang J, Mei C S, Jing X Y, Duan X. Chem J Chin Univ(张密林, 王君, 梅长松, 景晓燕, 段雪. 高等学校化学学报), 2002, 23: 1347

    27. [27]

      [27] Wan J W, Ma X B, He R X, Li M. Chin Chem Lett, 2014, 25: 557

    28. [28]

      [28] Zhang J R, Gao L. Mater Lett, 2004, 58: 2730

    29. [29]

      [29] Ren B, Fan M Q, Wang J, Jing X Y. Solid State Sci, 2011, 13: 1594

    30. [30]

      [30] Wan J W, Ding L, Wu T, Ma X B, Tang Q. RSC Adv, 2014, 4: 38323

    31. [31]

      [31] Zhou J Q, Wan J W, Ma X B, Wang W. Org Biomol Chem, 2012, 10: 4179

    32. [32]

    33. [33]

      [32] Wang W, Ma X B, Wan J W, Cao J, Tang Q. Dalton Trans, 2012, 41: 5715

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    18. [18]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    19. [19]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    20. [20]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

Metrics
  • PDF Downloads(0)
  • Abstract views(297)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return