Citation:
Farzaneh Ahmadi, Jahan Bakhsh Raoof, Reza Ojani, Mehdi Baghayeri, Moslem Mansour Lakouraj, Hamed Tashakkorian. Synthesis of Ag nanoparticles for the electrochemical detection of anticancer drug flutamide[J]. Chinese Journal of Catalysis,
;2015, 36(3): 439-445.
doi:
10.1016/S1872-2067(14)60209-6
-
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p-tert-butylcalix[4]arene and p-tert-butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+. The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration. Cyclic voltammetry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide. The effects of calixarene concentration, potential applied for the reduction of Ag+, number of calixarene layers, and pH value on the electrocatalytic activity of the Ag nanoparticles were investigated. The modified electrode had a linear range in differential pulse voltammetry of 10-1000 µmol/L with a detection limit of 9.33 µmol/L for flutamide at an S/N=3. The method was applied to the detection of flutamide in practical samples.
-
Keywords:
- Silver nanoparticle,
- Calix[n]arene,
- Flutamide,
- Voltammetric sensor
-
-
-
[1]
[1] Brogden R N, Chrisp P. Drugs Aging, 1991, 1: 104
-
[2]
[2] Small E J. Curr Opin Oncol, 1997, 9: 277
-
[3]
[3] Jonler M, Riehmann M, Bruskewitz R C. Drugs, 1994, 47: 66
-
[4]
[4] Tzanavaras P D, Themelis D G. J Pharm Biomed Anal, 2007, 43: 1820
-
[5]
[5] Nagaraja P, Sunitha K R, Silwadi M F. J Pharm Biomed Anal, 2000, 23: 617
-
[6]
[6] Nagaraja P, Arun Kumar H R, Vasantha R A, Yathirajan H S. Int J Pharm, 2002, 235: 113
-
[7]
[7] Reddy G V S, Reddy C L N, Myreddy V N, Reddy S J. J Clin Med Res, 2011, 3(3): 35
-
[8]
[8] Alvarez-Lueje A, Pena C, Nunez-Vergara L J, Squella J A. Electroanalysis, 1998, 10: 1043
-
[9]
[9] Farthing D, Sica D, Fakhry I, Walters D L, Cefali E A, Allan G. Biomed Chromatogr, 1994, 8: 251
-
[10]
[10] Raoof J B, Ojani R, Baghayeri M, Ahmadi F. Anal Methods, 2012, 4: 1825
-
[11]
[11] Lichtig J, Andrade R F, Vaz J M. Anal Chim Acta, 1996, 332: 161
-
[12]
[12] Mazloum-Ardakani M, Abolhasani M, Mirjalili B F, Sheikh-Mohseni M A, Dehghani-Firouzabadi A, Khoshroo A. Chin J Catal(催化学报), 2014, 35: 201
-
[13]
[13] Ensafi A A, Bahrami H, Karimi-Maleh H, Mallakpour S. Chin J Catal(催化学报), 2012, 33: 1919
-
[14]
[14] Raoof J B, Baghayeri M, Ojani R. Colloids Surf B, 2012, 95: 121
-
[15]
[15] Ojani R, Raoof J B, Maleki A A, Safshekan S. Chin J Catal(催化学报), 2014, 35: 423
-
[16]
[16] Tashkhourian J, Nezhad M R H, Khodavesi J, Javadi S. J Electroanal Chem, 2009, 633: 85
-
[17]
[17] Song Y Z, Ma K R, Zhu F X, Cheng Z P, Song Y, Dai B L, Xu J. Int J Electrochem Sci, 2013, 8: 3628
-
[18]
[18] Raoof J B, Ojani R, Hasheminejad E, Rashid-Nadimi S. Appl Surf Sci, 2012, 258: 2788
-
[19]
[19] Gutsche C D. Acc Chem Res, 1983, 16: 161
-
[20]
[20] Gutsche C D. Top Curr Chem, 1984, 123: 1
-
[21]
[21] Wieser C, Dieleman C B, Matt D. Coord Chem Rev, 1997, 165: 93
-
[22]
[22] Casnati A, Barboso S, Rouquette H, Schwing-Weill M J, Arnaud-Neu F, Dozol J F, Ungaro R. J Am Chem Soc, 2001, 123: 12182
-
[23]
[23] Ohnishi Y, Fujita J, Ochiai Y, Matsui S. Microelectron Eng, 1997, 35: 117
-
[24]
[24] Wei A. Chem Commun, 2006: 1581
-
[25]
[25] Von Baeyer A. Ber Dtsch Chem Ges, 1872, 5: 25
-
[26]
[26] Gutsche C D. Calixarenes Revisited. London: Royal Society of Chemistry, 1998
-
[27]
[27] Gutsche C D, Dhawan B, No K H, Muthukrishnan R. J Am Chem Soc, 1981, 103: 3782
-
[28]
[28] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: John Wiley & Sons Inc, 2000
-
[29]
[29] Laviron E. J Electroanal Chem Interfacial Electrochem, 1979, 101: 19
-
[30]
[30] Wang J. Analytical Electrochemistry. New York: Wiley-VCH, 2000Zhang Y Z, Zhang K Y, Ma H Y. Anal Biochem, 2009, 387: 13
-
[1]
-
-
-
[1]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[2]
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
-
[3]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[4]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[5]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[6]
Wenya Jiang , Jianyu Wei , Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371
-
[7]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[8]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[9]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[10]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[11]
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
-
[12]
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
-
[13]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[14]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[15]
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
-
[16]
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
-
[17]
Xueqi Zhang , Han Gao , Jianan Xu , Min Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148
-
[18]
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
-
[19]
Jingyu Chen , Sha Wu , Yuhao Wang , Jiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102
-
[20]
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(298)
- HTML views(28)