Citation: Nor Aqilah Mohd Fadzil, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam. A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1641-1652. doi: 10.1016/S1872-2067(14)60193-5 shu

A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation

  • Corresponding author: Mohd Hasbi Ab. Rahim, 
  • Received Date: 20 May 2014
    Available Online: 8 July 2014

    Fund Project: This work was supported by Universiti Malaysia Pahang and the Ministry of Education, Malaysia for Exploratory Research Grant Scheme (ERGS) (RDU 120605) (ERGS) (RDU 120605)again Ministry of Education, Malaysia support for MyPhD funding aid (Nor Aqilah Mohd Fadzil). (Nor Aqilah Mohd Fadzil)

  • The oxidation of para-xylene to terephthalic acid has been commercialised as the AMOCO process (Co/Mn/Br) that uses a homogeneous catalyst of cobalt and manganese together with a corrosive bromide compound as a promoter. This process is conducted in acidic medium at a high temperature (175-225 ℃). Concerns over environmental and safety issues have driven studies to find milder oxidation reactions of para-xylene. This review discussed past and current progress in the oxidation of para-xylene process. The discussion concentrates on the approach of green chemistry including (1) using heterogeneous catalysts with promising high selectivity and mild reaction condition, (2) application of carbon dioxide as a co-oxidant, and (3) application of alternative promoters. The optimisation of para-xylene oxidation was also outlined.
  • 加载中
    1. [1]

      [1] Li M, Niu F, Zuo X, Metelski P D, Busch D H, Subramaniam B. Chem Eng Sci, 2013, 104: 93

    2. [2]

      [2] Partenheimer W. Catal Today, 1995, 23: 69

    3. [3]

      [3] Wang L J, Cheng Y W, Wang Q B, Li X. Front Chem Eng China, 2007, 1: 317

    4. [4]

      [4] Giacomo C, Silber P. Ber Deutsch Chem Ges, 1912, 45: 38

    5. [5]

      [5] Xiao Y, Zhang X Y, Wang Q B, Tan Z, Guo C C, Deng W, Liu Z G, Zhang H F. Chin Chem Lett, 2011, 22: 135

    6. [6]

      [6] Stephens H N. J Am Chem Soc, 1926, 48: 2920

    7. [7]

      [7] Scheirs J, Long T E. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. Chichester: Wiley, 2013. 67

    8. [8]

      [8] Raghavendrachar P, Ramachandran S. Ind Eng Chem Res, 1992, 31: 453

    9. [9]

      [9] Saffer A, Barker R S. GB Patent 807091. 1959

    10. [10]

      [10] Whinfield J R, Dickson J T. GB Patent 578079. 1946

    11. [11]

      [11] Saffer A, Barker R S. US Patent 2833816. 1958

    12. [12]

      [12] Saffer A, Barker R S. US Patent 3089906. 1963

    13. [13]

      [13] Landau R, Saffer A. Chem Eng Progr, 1968, 64: 20

    14. [14]

      [14] Ghiaci M, Mostajeran M, Gil A. Ind Eng Chem Res, 2012, 51: 15821

    15. [15]

      [15] Tomás R A F, Bordado J C M, Gomes J F P. Chem Rev, 2013, 113: 7421

    16. [16]

      [16] Li K T, Li S W. Appl Catal A, 2008, 340: 271

    17. [17]

      [17] Evans S, Lindsay Smith J R. J Chem Soc, Perkin Trans, 2000, 2: 1541

    18. [18]

      [18] Shaabani A, Rahmati A. Catal Commun, 2008, 9: 1692

    19. [19]

      [19] Gupta M, Paul S, Gupta R, Loupy A. Tetrahedron lett, 2005, 46: 4957

    20. [20]

      [20] Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids. New York: McGraw-Hill, 2001. 28

    21. [21]

      [21] Savage P E. J Supercrit Fluids, 2009, 47: 407

    22. [22]

      [22] Dunn J B, Savage P E. Ind Eng Chem Res, 2002, 41: 4460

    23. [23]

      [23] Osada M, Savage P E. AIChE J, 2009, 55: 710

    24. [24]

      [24] Garcia-Verdugo E, Venardou E, Thomas W B, Whiston K, Partenheimer W, Hamley P A, Poliakoff M. Adv Synth Catal, 2004, 346: 307

    25. [25]

      [25] Garcia-Verdugo E, Fraga-Dubreuil J, Hamley P A, Thomas W B, Whiston K, Poliakoff M. Green Chem, 2005, 7: 294

    26. [26]

      [26] Fraga-Dubreuil J, Poliakoff M. Pure Appl Chem, 2006, 78: 1971

    27. [27]

      [27] Hamley P A, Ilkenhans T, Webster J M, Garcia-Verdugo E, Venardou E, Clarke M J, Auerbach R, Thomas W B, Whiston K, Poliakoff M. Green Chem, 2002, 4: 235

    28. [28]

      [28] Chavan S A, Srinivas D, Ratnasamy P. J Catal, 2001, 204: 409

    29. [29]

      [29] Sabater M J, Corma A, Domenech A, Forn’es V, Garcia H. Chem Commun, 1997: 1285

    30. [30]

      [30] Hutchings G J. Chem Commun, 1999: 301

    31. [31]

      [31] Falcon H, Campos-Martin J M, Al-Zahrani S M, Fierro J L G. Catal Commun, 2010, 12: 5

    32. [32]

      [32] Hermans I, Peeters J, Jacobs P A. Top Catal, 2008, 50: 124

    33. [33]

      [33] Frank C E. Chem Rev, 1950, 46: 155

    34. [34]

      [34] Russell G A. J Chem Educ, 1959, 36: 111

    35. [35]

      [35] Mayo F R. Acc Chem Res, 1968, 1: 193

    36. [36]

      [36] Ichikawa Y, Yamashita G, Tokashiki M, Yamaji T. Ind Eng Chem, 1970, 62(4): 38

    37. [37]

      [37] Fan J W, Zhang R Y. J Phys Chem A, 2006, 110: 7728

    38. [38]

      [38] Guo Z, Liu B, Zhang Q H, Deng W P, Wang Y, Yang Y H. Chem Soc Rev, 2014, 43: 3480

    39. [39]

      [39] Hronec M, Hrabe Z. Ind Eng Chem Prod Res Dev, 1986, 25: 257

    40. [40]

      [40] Jacob C R, Varkey S P, Ratnasamy P. Appl Catal A, 1999, 182: 91

    41. [41]

      [41] Tibbitt J M, Gong W H, Schammel W P, Hepfer R P, Adamian V, Brugge S P, Metelski P D, Zhou C X. WO Patent 133976 A2. 2007

    42. [42]

      [42] Kesavan L, Tiruvalam R, Ab Rahim M H, bin Saiman M I, Enache D I, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Taylor S H, Knight D W, Kiely C J, Hutching S G J. Science, 2011, 331: 195

    43. [43]

      [43] Ab Rahim M H, Forde M M, Jenkins R L, Hammond C, He Q, Dimitratos N, Lopez-Sanchez J A, Carley A F, Taylor S H, Willock D J, Murphy D M, Kiely C J, Hutching S G J. Angew Chem Int Ed, 2013, 52: 1280

    44. [44]

      [44] Ab Rahim M H, Forde M M, Hammond C, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Carley A F, Taylor S H, Willock D J, Hutchings G J. Top Catal, 2013, 56: 1843

    45. [45]

      [45] Deori K, Gupta D, Saha B, Awasthi S K, Deka S. J Mater Chem A, 2013, 1: 7091

    46. [46]

      [46] Qin Z Z, Su T M, Jiang Y X, Ji H B, Qin W G. Chem Eng J, 2014, 242:414

    47. [47]

      [47] Liu H L, Li Y W, Jiang H F, Vargas C, Luque R. Chem Commun, 2012, 48: 8431

    48. [48]

      [48] Della Pina C, Falletta E, Rossi M. Chem Soc Rev, 2012, 41: 350

    49. [49]

      [49] Khan N A, Kennedy E M, Dlugogorski B Z, Adesina A A, Stockenhuber M. Catal Commun, 2014, 53: 42

    50. [50]

      [50] Impeng S, Khongpracha P, Warakulwit C, Jansang B, Sirijaraensre J, Ehara M, Limtrakul J. RSC Adv, 2014, 4: 12572

    51. [51]

      [51] Liu H L, Chen G Z, Jiang H F, Li Y W, Luque R. ChemSusChem, 2012, 5: 1892

    52. [52]

      [52] Sheehan R J. Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid. Wiley-VCH, 2002. 156

    53. [53]

      [53] Shigeyasu M, Kusano N. US Patent 4160108. 1979

    54. [54]

      [54] Seko M, Miyake T, Takeuchi H, Tanouchi M. US Patent 4230882A. 1980

    55. [55]

      [55] Scott L S, Sommers R W. US Patent 158738. 1979

    56. [56]

      [56] Kahsar K R, Schwartz D K, Medlin J W. J Am Chem Soc, 2014, 136: 520

    57. [57]

      [57] Bramucci M G, McCutchen C M, Nagarajan V, Thomas S M. Google Patents, 2002

    58. [58]

      [58] Bramucci M G, McCutchen C M, Nagarajan V, Thomas S M. US Patent 0170836. 2003

    59. [59]

      [59] Robert R, Ratnasamy P. J Mol Catal A, 1995, 100: 93

    60. [60]

      [60] Mki-Arvela P, Kumar N, Nasir A, Salmi T, Murzin D U. Ind Eng Chem Res, 2005, 44: 9376

    61. [61]

      [61] Marimuthu A, Zhang J W, Linic S. Science, 2013, 339: 1590

    62. [62]

      [62] Lee I, Delbecq F, Morales R, Albiter M A, Zaera F. Nat Mater, 2009, 8: 132

    63. [63]

      [63] Wang Y, Zhang S J, Zhao Y X, Lin M. J Mol Catal A, 2014, 385:1

    64. [64]

      [64] Yoo J S, Jhung S H, Lee K H, Park Y S. Appl Catal A, 2002, 223: 239

    65. [65]

      [65] Zuo X B, Niu F H, Snavely K, Subramaniam B, Busch D H. Green Chem, 2010, 12: 260

    66. [66]

      [66] Zuo X B, Subramaniam B, Busch D H. Ind Eng Chem Res, 2008, 47: 546

    67. [67]

      [67] Park S E, Yoo J S. Stud Surf Sci Catal, 2004, 153: 303

    68. [68]

      [68] Jhung S H, Park Y S, Lee K H, Chae J H, Yoo J S. WO Patent 037407Al. 2000

    69. [69]

      [69] Raju G, Reddy B M, Park S E. Indian J Chem A, 2012, 51: 1315

    70. [70]

      [70] Ali A M, Emanuelsson E A C, Patterson D A. Appl Catal B, 2010, 97: 168

    71. [71]

      [71] Wang S B, Zhu Z H. Energy Fuels, 2004, 18: 1126

    72. [72]

      [72] Yan N, Fu X Z, Chuang K T, Luo J L. J Power Sources, 2014, 254: 48

    73. [73]

      [73] Ma Z, Zaera F. Encyclopedia of Inorganic and Bioinorganic Chemistry. Hoboken, New Jersey: John Wiley and Sons, 2014. 418

    74. [74]

      [74] Pakhare D, Spivey J. Chem Soc Rev, 2014

    75. [75]

      [75] Ansari M B, Park S E. Energy Environ Sci, 2012, 5: 9419

    76. [76]

      [76] Brill W F. Ind Eng Chem, 1960, 52: 837

    77. [77]

      [77] Tashiro Y, Iwahama T, Sakaguchi, Ishii Y. Adv Synth Catal, 2001, 343: 220

    78. [78]

      [78] Coseri S. Catal Rev-Sci Eng, 2009, 51: 218

    79. [79]

      [79] Xu H F, Tang R R, Gong N H, Liu C H, Zhou Y P. Progr Chem, 2007, 19: 1736

    80. [80]

      [80] Saha B, Koshino N, Espenson J H. J Phys Chem A, 2004, 108: 425

    81. [81]

      [81] Cheng Y W, Li X, Wang L J, Wang Q B. Ind Eng Chem Res, 2006, 45: 4156

    82. [82]

      [82] Cao N, Chang E, Kaufman M. Senior Design Report. University of Pennsylvania, 2011

    83. [83]

      [83] Zhang Y, Feng J, Lyu Z, Li X. Modern Res Catal, 2014, 3: 19

    84. [84]

      [84] Horst A, Holmstrand H, Andersson P, Thornton B F, Wishkerman A, Keppler F, Gustafsson O. Geochim Cosmochim Acta, 2014, 125: 186

    85. [85]

      [85] Schammel W P, Huggins B J, Kulzick M A, Nubel P O, Rabatic B M, Zhou C X, Adamian V A, Gong W H, Metelski P D, Miller J T. US Patent 8624055. 2014

    86. [86]

      [86] Masuno M N, Smith P B, Hucul D A, Dumitrascu A, Brune K, Smith R L, Bissell J, Foster M. US Patent 0245316 A1. 2013

    87. [87]

      [87] Pacheco J J, Davis M E. Proceedings of the National Academy of Sciences of USA. 2014. 345

    88. [88]

      [88] Han I S, Kim M, Han C. Theor Appl Chem Eng, 2002, 8: 2989

    89. [89]

      [89] Han I S, Kim M, Lee C H, Cha W, Ham B K, Jeong J H, Lee H, Chung C B, Han C. Korean J Chem Eng, 2003, 20: 977

    90. [90]

      [90] Liu R L, Su H Y, Mu S J, Jia T, Chen W Q, Chu J. Chin J Chem Eng, 2004, 12: 234

    91. [91]

      [91] Zhan Y, Su H Y, Liu R L, Chu J. Chin J Chem Eng, 2005, 13: 642

    92. [92]

      [92] He H, Du W L, Qian F, Zhong W M. Ind Eng Chem Res, 2010, 49: 5683

    93. [93]

      [93] Makareviciene V, Skorupskaite V, Levisauskas D, Andruleviciute V, Kazancev K. Int J Green Energy, 2014, 11: 527

    94. [94]

      [94] Rasouli F, Aber S, Salari D, Khataee A R. Appl Clay Sci, 2014, 87: 228

    95. [95]

      [95] Salman J M. Arabian J Chem, 2014, 7: 101

    96. [96]

      [96] Roosta M, Ghaedi M, Daneshfar A, Darafarin S, Sahraei R, Purkait M K. Ultrason Sonochem, 2014, 21: 1441

    97. [97]

      [97] Torrades F, García-Montao J. Dyes Pigments, 2014, 100: 184

    98. [98]

      [98] Wang S, Liu H P, Zhang Y, Yu J, Yuan W. Appl Mechanics Mater, 2014, 464: 77

    99. [99]

      [99] Pasma S A, Daik R, Maskat M Y, Hassan O. Int J Polym Sci, 2013, 10:1

    100. [100]

      [100] Krbahti B K, Rauf M A. Chem Eng J, 2008, 136: 25

    101. [101]

      [101] Jeganathan P M, Venkatachalam S, Karichappan T, Ramasamy S. Preparative Biochem Biotechnol, 2014, 44: 56

    102. [102]

      [102] Sharif K M, Rahman M M, Azmir J, Mohamed A, Jahurul M H A, Sahena F, Zaidul I S M. J Food Eng, 2014, 124: 105

    103. [103]

      [103] Grilc M, Likozar B, Levec J. Appl Catal B, 2014, 150-151: 275

    104. [104]

      [104] Mujtaba A, Ali M, Kohli K. Chem Eng Res Des, 2014, 92: 156

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    3. [3]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    4. [4]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    8. [8]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    9. [9]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    10. [10]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    11. [11]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    12. [12]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    13. [13]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    14. [14]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    18. [18]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    19. [19]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    20. [20]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

Metrics
  • PDF Downloads(0)
  • Abstract views(360)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return