Citation:
Suitao Qi, Yingying Li, Jiaqi Yue, Hao Chen, Chunhai Yi, Bolun Yang. Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts[J]. Chinese Journal of Catalysis,
;2014, 35(11): 1833-1839.
doi:
10.1016/S1872-2067(14)60178-9
-
Pt-Ni bimetallic catalysts and the corresponding monometallic Pt catalysts supported on active carbon were prepared by incipient wetness impregnation and characterized by X-ray diffraction, N2 adsorption, and NH3-temperature programmed desorption. Their activities for decalin dehydrogenation were investigated at a superheated liquid film state in a batch reactor. The effects of temperature, impregnation sequence, and Pt/Ni molar ratio on the dehydrogenation activity and the naphthalene yield were investigated. The results show that the Pt-Ni bimetallic catalyst significantly enhanced hydrogen evolution compared with either Ni or Pt monometallic catalyst. The highest dehydrogenation conversion and naphthalene yield were obtained when the Pt/Ni molar ratio was 1:1 and Pt was impregnated first. The experimental results were correlated with density functional theory calculations of hydrogen binding energy (HBE) on different catalytic surfaces. The correlation confirmed that bimetallic surfaces with stronger HBEs had higher dehydrogenation activities.
-
Keywords:
- Platinum,
- Nickel,
- Bimetallic,
- Decalin,
- Dehydrogenation,
- Density functional theory
-
-
-
[1]
[1] Eberle U, Felderhoff M, Schüth F. Angew Chem Int Ed, 2009, 48: 6608
-
[2]
[2] David E. J Mater Process Technol, 2005, 162-163: 169
-
[3]
[3] Biniwale R B, Rayalu S, Devott S, Ichikawa M. Int J Hydrogen Energy, 2008, 33: 360
-
[4]
[4] Zhu G L, Yang B L. Progr Chem (朱刚利, 杨伯伦. 化学进展), 2009, 21: 2760
-
[5]
[5] Ninomiya W, Tanabe Y, Sotowa K I, Yasukawa T, Sugiyama S. Res Chem Intermed, 2008, 34: 663
-
[6]
[6] Pande J V, Shukla A, Biniwale R B. Int J Hydrogen Energy, 2012, 37: 6756
-
[7]
[7] Kariya N, Fukuoka A, Ichikawa M. Appl Catal A, 2002, 233: 91
-
[8]
[8] Saito Y, Aramaki K, Hodoshima S, Saito M, Shono A, Kuwano J, Otake K. Chem Eng Sci, 2008, 63: 4935
-
[9]
[9] Wang Y G, Shah N, Huffman G P. Energy Fuels, 2004, 18: 1429
-
[10]
[10] Tien P D, Satoh T, Miura M, Nomura M. Fuel Process Technol, 2008, 89: 415
-
[11]
[11] Du J P, Zhao R H, Jiao G R. Int J Hydrogen Energy, 2013, 38: 5789
-
[12]
[12] Chen A B, Zhang W P, Li X Y, Tan D L, Han X W, Bao X H. Catal Lett, 2007, 119: 159
-
[13]
[13] Shukla A A, Gosavi P V, Pande J V, Kumar V P, Chary K V R, Biniwale R B. Int J Hydrogen Energy, 2010, 35: 4020
-
[14]
[14] Shinohara C, Kawakami S, Moriga T, Hayashi H, Hodoshima S, Saito Y, Sugiyama S. Appl Catal A, 2004, 266: 251
-
[15]
[15] Tien P D, Satoh T, Miura M, Nomura M. Energy Fuels, 2005, 19: 731
-
[16]
[16] Tien P D, Satoh T, Miura M, Nomura M. Energy Fuels, 2005, 19: 2110
-
[17]
[17] Wang Y G, Shah N, Huggins F E, Huffman G P. Energy Fuels, 2006, 20: 2612
-
[18]
[18] Jiang N Z, Rao K S R, Jin M J, Park S E. Appl Catal A, 2012, 425-426: 62
-
[19]
[19] Suttisawat Y, Horikoshi S, Sakai H, Abe M. Int J Hydrogen Energy, 2010, 35: 6179
-
[20]
[20] Yolcular S, Olgun Ö. Catal Today, 2008, 138: 198
-
[21]
[21] Nagaraja B M, Shin C H, Jung K D. Appl Catal A, 2013, 467: 211
-
[22]
[22] Patil S P, Pande J V, Biniwale R B. Int J Hydrogen Energy, 2013, 38: 15233
-
[23]
[23] Alhumaidan F, Tsakiris D, Cresswell D, Garforth A. Int J Hydrogen Energy, 2013, 38: 14010
-
[24]
[24] Aboul-Fotouh S M K, Aboul-Gheit N A K. Chin J Catal (催化学报), 2012, 33: 697
-
[25]
[25] Gao X F, Chen C L, Ren S Y, Zhang J, Su D S. Chin J Catal (高旭锋, 谌春林, 任士远, 张建, 苏党生. 催化学报), 2012, 33: 1069
-
[26]
[26] Biniwale R B, Kariya N, Ichikawa M. Catal Lett, 2005, 105: 83
-
[27]
[27] Qi S T, Yu W T, Lonergan W W, Yang B L, Chen J G. Chin J Catal (齐随涛, 俞伟婷, Lonergan W W, 杨伯伦, 陈经广. 催化学报), 2010, 31: 955
-
[28]
[28] Qi S T, Yu W T, Lonergan W W, Yang B L, Chen J G. ChemCatChem, 2010, 2: 625
-
[29]
[29] Chen J G, Qi S T, Humbert M P, Menning C A, Zhu Y X. Acta Phys-Chim Sin (陈经广, 齐随涛, Humbert M P, Menning C A, 朱月香. 物理化学学报), 2010, 26: 869
-
[30]
[30] Chen J G, Menning C A, Zellner M B. Surf Sci Rep, 2008, 63: 201
-
[31]
[31] Skoplyak O, Barteau M A, Chen J G. ChemSusChem, 2008, 1: 524
-
[32]
[32] Hansgen D A, Vlachos D G, Chen J G. Nat Chem, 2010, 2: 484
-
[33]
[33] Shu Y Y, Murillo L E, Bosco J P, Huang W, Frenkel A I, Chen J G. Appl Catal A, 2008, 339: 169
-
[34]
[34] Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. J Phys Chem C, 2007, 111: 404
-
[1]
-
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[10]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[11]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[12]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[13]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[14]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[15]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[16]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[18]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[19]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[20]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(483)
- HTML views(38)