Citation: S. Narayanan, J. Judith Vijaya, S. Sivasanker, Sihai Yang, L. John Kennedy. Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1892-1989. doi: 10.1016/S1872-2067(14)60177-7 shu

Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method

  • Corresponding author: J. Judith Vijaya, 
  • Received Date: 11 April 2014
    Available Online: 17 June 2014

  • ZSM-5 zeolite with a hexagonal cubic morphology was synthesized by a hydrothermal method using Triton X-100, a nonionic surfactant. The samples prepared with and without the surfactant were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, N2 adsorption, high resolution transmission electron microscopy (TEM), high resolution scanning electron microscopy, energy dispersive X-ray analysis, and NH3 temperature-programmed desorption. The XRD patterns confirmed the formation of a pure ZSM-5 crystalline phase without secondary phases. TEM images revealed that the hexagonal cubes were made of peanut-shaped nanoparticles with voids. The catalytic activity of the zeolite samples was evaluated using the selective oxidation of benzyl alcohol with tertiary-butyl hydrogen peroxide as the oxidant at 90 ℃. The surfactant-assisted preparation yielded a zeolite that gave a higher conversion than the one prepared in the absence of the surfactant. The catalyst was retrieved and reused four times without significant loss in activity and selectivity.
  • 加载中
    1. [1]

      [1] van Bekkum H, Flanigen E M, Jacobs P A, Jansen J C. Studies in Surface Science and Catalysis, Vol. 137, Introduction to Zeolite Science and Practice. Amsterdam: Elsevier, 2001

    2. [2]

      [2] Dyer A. An Introduction to Zeolite Molecular Sieves. New York: Wiley, 1988

    3. [3]

      [3] Corma A. Chem Rev, 1995, 95: 559

    4. [4]

      [4] Ozin G A, Kuperman A, Stein A. Angew Chem Int Ed, 1989, 28: 359

    5. [5]

      [5] Egeblad K, Christensen C H, Kustova M, Christensen C H. Chem Mater, 2008, 20: 946

    6. [6]

      [6] Argauer R J, Landolt G R. US Patent 3 702 886 A. 1972

    7. [7]

      [7] Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramırez J. Microporous Mesoporous Mater, 2004, 69: 29

    8. [8]

      [8] Hartmann M. Angew Chem Int Ed, 2004, 43: 5880

    9. [9]

      [9] Lopez-Orozco S, Inayat A, Schwab A, Selvam T, Schwieger W. Adv Mater, 2011, 23: 2602

    10. [10]

      [10] Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem Soc Rev, 2008, 37: 2530

    11. [11]

      [11] Meng X J, Nawaz F, Xiao F S. Nano Today, 2009, 4: 292

    12. [12]

      [12] Koekkoek A J J, Xin H C, Yang Q H, Li C, Hensen E J M. Microporous Mesoporous Mater, 2011, 145: 172

    13. [13]

      [13] Kim S S, Shah J, Pinnavaia T J. Chem Mater, 2003, 15: 1664

    14. [14]

      [14] Tao Y S, Kanoh H, Hanzawa Y, Kaneko K. Colloids Surf A, 2004, 241: 75

    15. [15]

      [15] Valtchev V, Smaihi M, Faust A C, Vidal L. Stud Surf Sci Catal, 2004, 154: 588

    16. [16]

      [16] Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Nat Mater, 2006, 5: 718

    17. [17]

      [17] Yang J H, Yu S X, Hu H Y, Zhang Y, Lu J M, Wang J Q, Yin D H. Chem Eng J, 2011, 166: 1083

    18. [18]

      [18] Petushkov A, Yoon S, Larsen S C. Microporous Mesoporous Mater, 2011, 137: 92

    19. [19]

      [19] Wang L F, Zhang Z, Yin C Y, Shan Z C, Xiao F S. Microporous Mesoporous Mater, 2010, 131: 58

    20. [20]

      [20] Chen G D, Jiang L, Wang L Z, Zhang J L. Microporous Mesoporous Mater, 2010, 134: 189

    21. [21]

      [21] Sharma R V, Soni K K, Dalai A K. Catal Commun, 2012, 29: 87

    22. [22]

      [22] Mallat T, Baiker A. Chem Rev, 2004, 104: 3037

    23. [23]

      [23] Pérez Y, Ballesteros R, Fajardo M, Sierra I, del Hierro I. J Mol Catal A, 2012, 352: 45

    24. [24]

      [24] Ajaikumar S, Pandurangan A. J Mol Catal A, 2008, 290: 35

    25. [25]

      [25] Yu Y Y, Lu B, Wang X G, Zhao J X, Wang X Z, Cai Q H. Chem Eng J, 2010, 162: 738

    26. [26]

      [26] Besson M, Gallezot P. Catal Today, 2000, 57: 127

    27. [27]

      [27] Dimitratos N, Lopez-Sanchez J A, Morgan D, Carley A, Prati L, Hutchings G J. Catal Today, 2007, 122: 317

    28. [28]

      [28] Bansal R K. Synthetic Approaches in Organic Chemistry. Burlington: Jones & Bartlett Learing, 1996

    29. [29]

      [29] Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Colloids Surf A, 2009, 340: 126

    30. [30]

      [30] Ragupathi C, Vijaya J J, Narayanan S, Kennedy L J, Ramakrishna S. Chin J Catal (催化学报), 2013, 34: 1951

    31. [31]

      [31] Guo Y P, Wang H J, Guo Y J, Guo L H, Chu L F, Guo C X. Chem Eng J, 2011, 166: 391

    32. [32]

      [32] Fang Y M, Hu H Q. J Am Chem Soc, 2006, 128: 10636

    33. [33]

      [33] Bandyopadhyay S, Paul G K, Roy R, Sen S K, Sen S. Mater Chem Phys, 2002, 74: 83

    34. [34]

      [34] Ni Y M, Sun A M, Wu X L, Hai G L, Hu J L, Li T, Li G X. Microporous Mesoporous Mater, 2011, 143: 435

    35. [35]

      [35] Adam F, Ooi W T. Appl Catal A, 2012, 445-446: 252

    36. [36]

      [36] Chaudhari M P, Sawant S B. Chem Eng J, 2005, 106: 111

    37. [37]

      [37] Mondelli C, Ferri D, Grunwaldt J D, Krumeich F, Mangold S, Psaro R, Baiker A. J Catal, 2007, 252: 77

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    3. [3]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    4. [4]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    7. [7]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    12. [12]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    15. [15]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    18. [18]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

Metrics
  • PDF Downloads(0)
  • Abstract views(277)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return