Citation:
Changlin Yu, Wanqin Zhou, Jimmy C. Yu, Hong Liu, Longfu Wei. Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation[J]. Chinese Journal of Catalysis,
;2014, 35(10): 1609-1618.
doi:
10.1016/S1872-2067(14)60170-4
-
Photocatalysis has attracted much attention for its promise in converting solar energy to chemical energy and in degrading various pollutants. Many recent investigations have demonstrated photocatalysts with well-defined junctions between two semiconductors with matched electronic band structures. Such structures effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to extremely high activity and stability. In this review, we focus on the influence of the heterojunction on the performance of semiconductor photocatalysts, including TiO2-based, ZnO-based, and Ag-based semiconductor photocatalysts. We also investigate fabrication methods for heterojunctions and attempt to understand the mechanisms behind photocatalysis. Finally, we propose challenges to design and clarify the mechanism for enhancing the effect of the heterojunction on photocatalyst performance.
-
-
-
[1]
[1] Fujishima A, Honda K. Nature, 1972, 238: 37
-
[2]
[2] Cui W Q, Liu Y F, Liu L, Hu J S, Liang Y H. Appl Catal A, 2012, 417-418: 111
-
[3]
[3] Jing D W, Jing L, Liu H, Yao S, Guo L J. Ind Eng Chem Res, 2013, 52: 1992
-
[4]
[4] Ahmed A Y, Kandiel T A, Oekermann T, Bahnemann D. J Phys Chem Lett, 2011, 2: 2461
-
[5]
[5] Zhang J Y, Wang Y H, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl Mater Interfaces, 2013, 5: 1031
-
[6]
[6] Cui W Q, Ma S S, Liu L, Liang Y H. Chem Eng J, 2012, 204-206: 1
-
[7]
[7] Wang Y, Yu J G, Xiao W, Li Q. J Mater Chem A, 2014, 2: 3847
-
[8]
[8] Yu C L, Yang K, Xie Y, Fan Q Z, Yu J C, Shu Q, Wang C Y. Nanoscale, 2013, 5: 2142
-
[9]
[9] Yu C L, Cao F F, Li X, Li G, Xie Y, Yu J C, Shu Q, Fan Q Z, Chen J C. Chem Eng J, 2013, 219: 86
-
[10]
[10] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250
-
[11]
[11] Yu C L, Chen J C, Cao F F, Li X, Fan Q Z, Yu J C, Wei L F. Chin J Catal (余长林, 陈建钗, 操芳芳, 李鑫, 樊启哲, Yu J C, 魏龙福. 催化学报), 2013, 34: 385
-
[12]
[12] Li K, Chai B, Peng T Y, Mao J, Zan L. ACS Catal, 2013, 3: 170
-
[13]
[13] Grötzel M. J Photochem Photobiol C, 2003, 4: 145
-
[14]
[14] Gong X Q, Selloni A, Dulub O, Jacobson P, Diebold U. J Am Chem Soc, 2008, 130: 370
-
[15]
[15] Rodrigues S, Ranjit K T, Uma S, Martyanov I N, Klabunde K J. Adv Mater, 2005, 17: 2467
-
[16]
[16] Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 4516
-
[17]
[17] Chen X F, Wang X C, Hou Y D, Huang J H, Wu L, Fu X Z. J Catal, 2008, 255: 59
-
[18]
[18] Yu C L, Li G, Kumar S, Kawasaki H, Jin R C. J Phys Chem Lett, 2013, 4: 2847
-
[19]
[19] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
-
[20]
[20] Yu C L, Cao F F, Li G, Wei R F, Yu J C, Jin R C, Fan Q Z, Wang C Y. Sep Purif Technol, 2013, 120: 110
-
[21]
[21] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76
-
[22]
[22] Zhou X M, Liu G, Yu J G, Fan W H. J Mater Chem, 2012, 22: 21337
-
[23]
[23] Bi Y P, Hu H Y, Ouyang S X, Lu G X, Cao J Y, Ye J H. Chem Commun, 2012, 48: 3748
-
[24]
[24] Heremans P, Cheyns D, Rand B P. Acc Chem Res, 2009, 42: 1740
-
[25]
[25] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766
-
[26]
[26] Yu C L, Li G, Kumar S, Yang K, Jin R C. Adv Mater, 2014, 26: 892
-
[27]
[27] Su R, Tiruvalam R, Logsdail A J, He Q, Downing C A, Jensen M T, Dimitratos N, Kesavan L, Wells P P, Bechstein R, Jensen H H, Wendt S, Catlow C R A, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2014, 8: 3490
-
[28]
[28] Yu C L, Wei L F, Li X, Chen J C, Fan Q Z, Yu J C. Mater Sci Eng B, 2013, 178: 344
-
[29]
[29] Yu C L, Yang K, Zhou W Q, Fan Q Z, Wei L F, Yu J C. J Phys Chem Solids, 2013, 74: 1714
-
[30]
[30] Yu C L, Fan C F, Meng X J, Yang K, Cao F F, Li X. React Kinet Catal Lett, 2011, 103: 141
-
[31]
[31] Yu C L, Yu J C, Fan C F, Wen H R, Hu S J. Mater Sci Eng B, 2010, 166: 213
-
[32]
[32] Xing M Y, Yang B Y, Yu H, Tian B Z, Bagwasi S, Zhang J L, Gong X Q. J Phys Chem Lett, 2013, 4: 3910
-
[33]
[33] Yu J G, Xiong J F, Cheng B, Liu S W. Appl Catal B, 2005, 60: 211
-
[34]
[34] Yu C L, Fan Q Z, Xie Y, Chen J C, Shu Q, Yu J C. J Hazard Mater, 2012, 237-238: 38
-
[35]
[35] Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E. J Phys Chem C, 2012, 116: 20887
-
[36]
[36] Yu C L, Cai D J, Yang K, Yu J C, Zhou Y, Fan C F. J Phys Chem Solids, 2010, 71: 1337
-
[37]
[37] Yu C L, Yu J C. Catal Lett, 2009, 129: 462
-
[38]
[38] Yu J G, Wang Y, Xiao W. J Mater Chem A, 2013, 1: 10727
-
[39]
[39] Kumar N, Maitra U, Hegde V I, Waghmare U V, Sundaresan A, Rao C N R. Inorg Chem, 2013, 52: 10512
-
[40]
[40] Boppana V B R, Lobo R F. J Catal, 2011, 281: 156
-
[41]
[41] Yu C L, Yu J C, Zhou W Q, Yang K. Catal Lett, 2010, 140: 172
-
[42]
[42] Xing M Y, Qi D Y, Zhang J L, Chen F, Tian B Z, Bagwas S, Anpo M. J Catal, 2012, 294: 37
-
[43]
[43] Xing M Y, Zhang J L, Chen F, Tian B Z. Chem Commun, 2011, 47: 4947
-
[44]
[44] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575
-
[45]
[45] Qiu B C, Xing M Y, Zhang J L. J Am Chem Soc, 2014, 136: 5852
-
[46]
[46] Dai G P, Yu J G, Liu G. J Phys Chem C, 2011, 115: 7339
-
[47]
[47] Yu C L, Wei L F, Chen J C, Xie Y, Zhou W Q, Fan Q Z. Ind Eng Chem Res, 2014, 53: 5759
-
[48]
[48] Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T T Y. J Phys Chem C, 2011, 115: 7419
-
[49]
[49] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164
-
[50]
[50] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl Mater Interfaces, 2009, 1: 2111
-
[51]
[51] Kim Y J, Gao B F, Han S Y, Jung M H, Chakraborty A K, Ko T, Lee C, Lee W I. J Phys Chem C, 2009, 113: 19179
-
[52]
[52] Sun M, Chen G D, Zhang Y K, Wei Q, Ma Z M, Du B. Ind Eng Chem Res, 2012, 51: 2897
-
[53]
[53] Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Wither R L. Nat Mater, 2010, 9: 559
-
[54]
[54] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J Am Chem Soc, 2011, 133: 6490
-
[55]
[55] Bi Y P, Ouyang S X, Cao J Y, Ye J H. Phys Chem Chem Phys, 2011, 13: 10071
-
[56]
[56] Yang X F, Cui H Y, Li Y, Qin J L, Zhang R X, Tang H. ACS Catal, 2013, 3: 363
-
[57]
[57] Tang J T, Liu Y H, Li H Z, Tan Z, Li D T. Chem Commun, 2013, 49: 5498
-
[58]
[58] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900
-
[59]
[59] Wang W S, Du H, Wang R X, Wen T, Xu A W. Nanoscale, 2013, 5: 3315
-
[60]
[60] Zhu L, Wei B, Xu L L, Lü Z, Zhang H L, Gao H, Che J X. CrystEngComm, 2012, 14: 5705
-
[61]
[61] Xu H, Xu Y G, Li H M, Xia J X, Xiong J, Yin S, Huang C J, Wan H L. Dalton Trans, 2012, 41: 3387
-
[62]
[62] Zhou W J, Liu H, Wang J Y, Liu D, Du G J, Cui J J. ACS Appl Mater Interfaces, 2010, 2: 2385
-
[63]
[63] Yao W F, Zhang B, Huang C P, Ma C, Song X L, Xu Q J. J Mater Chem, 2012, 22: 4050
-
[64]
[64] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal (沈凯, Gondal M A, Siddigue R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78
-
[65]
[65] He W W, Kim H K, Wamer W G, Melka D, Callahan J H, Yin J J. J Am Chem Soc, 2014, 136: 750
-
[66]
[66] Mclaren A, Valdes-Solis T, Li G Q, Tsang S C. J Am Chem Soc, 2009, 131: 12540
-
[67]
[67] Li P, Wei Z, Wu T, Peng Q, Li Y D. J Am Chem Soc, 2011, 133: 5660
-
[68]
[68] Chu D, Masuda Y, Ohji T, Kato K. Langmuir, 2010, 26: 2811
-
[69]
[69] Yu C L, Yang K, Yu J C, Peng P, Cao F F, Li X, Zhou X C. Acta Phys-Chim Sin (物理化学学报), 2011, 27: 505
-
[70]
[70] Lai Y L, Meng M, Yu Y F, Wang X T, Ding T. Appl Catal B, 2011, 105: 335
-
[71]
[71] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X. Chin J Catal (余长林, 杨凯, 舒庆, Yu J C, 操芳芳, 李鑫. 催化学报), 2011, 32: 555
-
[72]
[72] Yu L L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Inorg Mater (余长林, 杨凯, Yu J C, 操芳芳, 李鑫, 周晓春. 无机材料学报), 2011, 26: 1157
-
[73]
[73] Yang K, Yu C L, Zhang L N, Yu J C. J Synth Cryst (杨凯, 余长林, 张丽娜, 余济美. 人工晶体学报), 2012, 41: 171
-
[74]
[74] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C. Sci China Chem, 2012, 55: 1802
-
[75]
[75] Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Inorg Chem, 2009, 48: 1819
-
[76]
[76] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176
-
[77]
[77] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900
-
[78]
[78] Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K. Mater Res Bull, 2011, 46: 140
-
[79]
[79] Yu C L, Zhou W Q, Yu J C, Cao F F, Li X. Chin J Chem, 2012, 30: 721
-
[80]
[80] Yu C L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Alloys Compd, 2011, 509: 4547
-
[81]
[81] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J Phys Chem C, 2007, 111: 18288
-
[82]
[82] Xie T P, Liu C L, Xu L J, Yang J, Zhou W. J Phys Chem C, 2013, 117: 24601
-
[83]
[83] Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. J Phys Chem C, 2012, 116: 11004
-
[84]
[84] He Z Q, Shi Y Q, Gao C, Wen L N, Chen J M, Song S A. J Phys Chem C, 2014, 118: 389
-
[85]
[85] Chang C, Zhu L Y, Wang S F, Chu X L, Yue L F. ACS Appl Mater Interfaces, 2014, 6: 5083
-
[86]
[86] Reddy K H, Martha S, Parida K M. Inorg Chem, 2013, 52: 6390
-
[87]
[87] Xu L L, Ni L, Shi W D, Guan J G. Chin J Catal (许蕾蕾,倪磊,施伟东,官建国.催化学报), 2012, 33: 1101
-
[88]
[88] Yu J G, Jin J, Cheng B, Jaroniec M. J Mater Chem A, 2014, 2: 3407
-
[89]
[89] Chai S N, Zhao G H, Zhang Y N, Wang Y J, Nong F Q, Li M F, Li D M. Environ Sci Technol, 2012, 46: 10182
-
[90]
[90] Yang L X, Luo S L, Li Y, Xiao Y, Kang Q, Cai Q Y. Environ Sci Technol, 2010, 44: 7641
-
[91]
[91] Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett, 2011, 11: 4774
-
[1]
-
-
-
[1]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[2]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[3]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[5]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[6]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[7]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[8]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[9]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[10]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
-
[11]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[12]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[13]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[14]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
-
[15]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[16]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[17]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[19]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[20]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(464)
- HTML views(69)