Citation: Changlin Yu, Wanqin Zhou, Jimmy C. Yu, Hong Liu, Longfu Wei. Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1609-1618. doi: 10.1016/S1872-2067(14)60170-4 shu

Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation

  • Corresponding author: Changlin Yu,  Hong Liu, 
  • Received Date: 24 May 2014
    Available Online: 5 June 2014

    Fund Project:

  • Photocatalysis has attracted much attention for its promise in converting solar energy to chemical energy and in degrading various pollutants. Many recent investigations have demonstrated photocatalysts with well-defined junctions between two semiconductors with matched electronic band structures. Such structures effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to extremely high activity and stability. In this review, we focus on the influence of the heterojunction on the performance of semiconductor photocatalysts, including TiO2-based, ZnO-based, and Ag-based semiconductor photocatalysts. We also investigate fabrication methods for heterojunctions and attempt to understand the mechanisms behind photocatalysis. Finally, we propose challenges to design and clarify the mechanism for enhancing the effect of the heterojunction on photocatalyst performance.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972, 238: 37

    2. [2]

      [2] Cui W Q, Liu Y F, Liu L, Hu J S, Liang Y H. Appl Catal A, 2012, 417-418: 111

    3. [3]

      [3] Jing D W, Jing L, Liu H, Yao S, Guo L J. Ind Eng Chem Res, 2013, 52: 1992

    4. [4]

      [4] Ahmed A Y, Kandiel T A, Oekermann T, Bahnemann D. J Phys Chem Lett, 2011, 2: 2461

    5. [5]

      [5] Zhang J Y, Wang Y H, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl Mater Interfaces, 2013, 5: 1031

    6. [6]

      [6] Cui W Q, Ma S S, Liu L, Liang Y H. Chem Eng J, 2012, 204-206: 1

    7. [7]

      [7] Wang Y, Yu J G, Xiao W, Li Q. J Mater Chem A, 2014, 2: 3847

    8. [8]

      [8] Yu C L, Yang K, Xie Y, Fan Q Z, Yu J C, Shu Q, Wang C Y. Nanoscale, 2013, 5: 2142

    9. [9]

      [9] Yu C L, Cao F F, Li X, Li G, Xie Y, Yu J C, Shu Q, Fan Q Z, Chen J C. Chem Eng J, 2013, 219: 86

    10. [10]

      [10] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250

    11. [11]

      [11] Yu C L, Chen J C, Cao F F, Li X, Fan Q Z, Yu J C, Wei L F. Chin J Catal (余长林, 陈建钗, 操芳芳, 李鑫, 樊启哲, Yu J C, 魏龙福. 催化学报), 2013, 34: 385

    12. [12]

      [12] Li K, Chai B, Peng T Y, Mao J, Zan L. ACS Catal, 2013, 3: 170

    13. [13]

      [13] Grötzel M. J Photochem Photobiol C, 2003, 4: 145

    14. [14]

      [14] Gong X Q, Selloni A, Dulub O, Jacobson P, Diebold U. J Am Chem Soc, 2008, 130: 370

    15. [15]

      [15] Rodrigues S, Ranjit K T, Uma S, Martyanov I N, Klabunde K J. Adv Mater, 2005, 17: 2467

    16. [16]

      [16] Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 4516

    17. [17]

      [17] Chen X F, Wang X C, Hou Y D, Huang J H, Wu L, Fu X Z. J Catal, 2008, 255: 59

    18. [18]

      [18] Yu C L, Li G, Kumar S, Kawasaki H, Jin R C. J Phys Chem Lett, 2013, 4: 2847

    19. [19]

      [19] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    20. [20]

      [20] Yu C L, Cao F F, Li G, Wei R F, Yu J C, Jin R C, Fan Q Z, Wang C Y. Sep Purif Technol, 2013, 120: 110

    21. [21]

      [21] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76

    22. [22]

      [22] Zhou X M, Liu G, Yu J G, Fan W H. J Mater Chem, 2012, 22: 21337

    23. [23]

      [23] Bi Y P, Hu H Y, Ouyang S X, Lu G X, Cao J Y, Ye J H. Chem Commun, 2012, 48: 3748

    24. [24]

      [24] Heremans P, Cheyns D, Rand B P. Acc Chem Res, 2009, 42: 1740

    25. [25]

      [25] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766

    26. [26]

      [26] Yu C L, Li G, Kumar S, Yang K, Jin R C. Adv Mater, 2014, 26: 892

    27. [27]

      [27] Su R, Tiruvalam R, Logsdail A J, He Q, Downing C A, Jensen M T, Dimitratos N, Kesavan L, Wells P P, Bechstein R, Jensen H H, Wendt S, Catlow C R A, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2014, 8: 3490

    28. [28]

      [28] Yu C L, Wei L F, Li X, Chen J C, Fan Q Z, Yu J C. Mater Sci Eng B, 2013, 178: 344

    29. [29]

      [29] Yu C L, Yang K, Zhou W Q, Fan Q Z, Wei L F, Yu J C. J Phys Chem Solids, 2013, 74: 1714

    30. [30]

      [30] Yu C L, Fan C F, Meng X J, Yang K, Cao F F, Li X. React Kinet Catal Lett, 2011, 103: 141

    31. [31]

      [31] Yu C L, Yu J C, Fan C F, Wen H R, Hu S J. Mater Sci Eng B, 2010, 166: 213

    32. [32]

      [32] Xing M Y, Yang B Y, Yu H, Tian B Z, Bagwasi S, Zhang J L, Gong X Q. J Phys Chem Lett, 2013, 4: 3910

    33. [33]

      [33] Yu J G, Xiong J F, Cheng B, Liu S W. Appl Catal B, 2005, 60: 211

    34. [34]

      [34] Yu C L, Fan Q Z, Xie Y, Chen J C, Shu Q, Yu J C. J Hazard Mater, 2012, 237-238: 38

    35. [35]

      [35] Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E. J Phys Chem C, 2012, 116: 20887

    36. [36]

      [36] Yu C L, Cai D J, Yang K, Yu J C, Zhou Y, Fan C F. J Phys Chem Solids, 2010, 71: 1337

    37. [37]

      [37] Yu C L, Yu J C. Catal Lett, 2009, 129: 462

    38. [38]

      [38] Yu J G, Wang Y, Xiao W. J Mater Chem A, 2013, 1: 10727

    39. [39]

      [39] Kumar N, Maitra U, Hegde V I, Waghmare U V, Sundaresan A, Rao C N R. Inorg Chem, 2013, 52: 10512

    40. [40]

      [40] Boppana V B R, Lobo R F. J Catal, 2011, 281: 156

    41. [41]

      [41] Yu C L, Yu J C, Zhou W Q, Yang K. Catal Lett, 2010, 140: 172

    42. [42]

      [42] Xing M Y, Qi D Y, Zhang J L, Chen F, Tian B Z, Bagwas S, Anpo M. J Catal, 2012, 294: 37

    43. [43]

      [43] Xing M Y, Zhang J L, Chen F, Tian B Z. Chem Commun, 2011, 47: 4947

    44. [44]

      [44] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575

    45. [45]

      [45] Qiu B C, Xing M Y, Zhang J L. J Am Chem Soc, 2014, 136: 5852

    46. [46]

      [46] Dai G P, Yu J G, Liu G. J Phys Chem C, 2011, 115: 7339

    47. [47]

      [47] Yu C L, Wei L F, Chen J C, Xie Y, Zhou W Q, Fan Q Z. Ind Eng Chem Res, 2014, 53: 5759

    48. [48]

      [48] Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T T Y. J Phys Chem C, 2011, 115: 7419

    49. [49]

      [49] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164

    50. [50]

      [50] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl Mater Interfaces, 2009, 1: 2111

    51. [51]

      [51] Kim Y J, Gao B F, Han S Y, Jung M H, Chakraborty A K, Ko T, Lee C, Lee W I. J Phys Chem C, 2009, 113: 19179

    52. [52]

      [52] Sun M, Chen G D, Zhang Y K, Wei Q, Ma Z M, Du B. Ind Eng Chem Res, 2012, 51: 2897

    53. [53]

      [53] Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Wither R L. Nat Mater, 2010, 9: 559

    54. [54]

      [54] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J Am Chem Soc, 2011, 133: 6490

    55. [55]

      [55] Bi Y P, Ouyang S X, Cao J Y, Ye J H. Phys Chem Chem Phys, 2011, 13: 10071

    56. [56]

      [56] Yang X F, Cui H Y, Li Y, Qin J L, Zhang R X, Tang H. ACS Catal, 2013, 3: 363

    57. [57]

      [57] Tang J T, Liu Y H, Li H Z, Tan Z, Li D T. Chem Commun, 2013, 49: 5498

    58. [58]

      [58] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900

    59. [59]

      [59] Wang W S, Du H, Wang R X, Wen T, Xu A W. Nanoscale, 2013, 5: 3315

    60. [60]

      [60] Zhu L, Wei B, Xu L L, Lü Z, Zhang H L, Gao H, Che J X. CrystEngComm, 2012, 14: 5705

    61. [61]

      [61] Xu H, Xu Y G, Li H M, Xia J X, Xiong J, Yin S, Huang C J, Wan H L. Dalton Trans, 2012, 41: 3387

    62. [62]

      [62] Zhou W J, Liu H, Wang J Y, Liu D, Du G J, Cui J J. ACS Appl Mater Interfaces, 2010, 2: 2385

    63. [63]

      [63] Yao W F, Zhang B, Huang C P, Ma C, Song X L, Xu Q J. J Mater Chem, 2012, 22: 4050

    64. [64]

      [64] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal (沈凯, Gondal M A, Siddigue R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78

    65. [65]

      [65] He W W, Kim H K, Wamer W G, Melka D, Callahan J H, Yin J J. J Am Chem Soc, 2014, 136: 750

    66. [66]

      [66] Mclaren A, Valdes-Solis T, Li G Q, Tsang S C. J Am Chem Soc, 2009, 131: 12540

    67. [67]

      [67] Li P, Wei Z, Wu T, Peng Q, Li Y D. J Am Chem Soc, 2011, 133: 5660

    68. [68]

      [68] Chu D, Masuda Y, Ohji T, Kato K. Langmuir, 2010, 26: 2811

    69. [69]

      [69] Yu C L, Yang K, Yu J C, Peng P, Cao F F, Li X, Zhou X C. Acta Phys-Chim Sin (物理化学学报), 2011, 27: 505

    70. [70]

      [70] Lai Y L, Meng M, Yu Y F, Wang X T, Ding T. Appl Catal B, 2011, 105: 335

    71. [71]

      [71] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X. Chin J Catal (余长林, 杨凯, 舒庆, Yu J C, 操芳芳, 李鑫. 催化学报), 2011, 32: 555

    72. [72]

      [72] Yu L L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Inorg Mater (余长林, 杨凯, Yu J C, 操芳芳, 李鑫, 周晓春. 无机材料学报), 2011, 26: 1157

    73. [73]

      [73] Yang K, Yu C L, Zhang L N, Yu J C. J Synth Cryst (杨凯, 余长林, 张丽娜, 余济美. 人工晶体学报), 2012, 41: 171

    74. [74]

      [74] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C. Sci China Chem, 2012, 55: 1802

    75. [75]

      [75] Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Inorg Chem, 2009, 48: 1819

    76. [76]

      [76] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176

    77. [77]

      [77] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900

    78. [78]

      [78] Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K. Mater Res Bull, 2011, 46: 140

    79. [79]

      [79] Yu C L, Zhou W Q, Yu J C, Cao F F, Li X. Chin J Chem, 2012, 30: 721

    80. [80]

      [80] Yu C L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Alloys Compd, 2011, 509: 4547

    81. [81]

      [81] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J Phys Chem C, 2007, 111: 18288

    82. [82]

      [82] Xie T P, Liu C L, Xu L J, Yang J, Zhou W. J Phys Chem C, 2013, 117: 24601

    83. [83]

      [83] Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. J Phys Chem C, 2012, 116: 11004

    84. [84]

      [84] He Z Q, Shi Y Q, Gao C, Wen L N, Chen J M, Song S A. J Phys Chem C, 2014, 118: 389

    85. [85]

      [85] Chang C, Zhu L Y, Wang S F, Chu X L, Yue L F. ACS Appl Mater Interfaces, 2014, 6: 5083

    86. [86]

      [86] Reddy K H, Martha S, Parida K M. Inorg Chem, 2013, 52: 6390

    87. [87]

      [87] Xu L L, Ni L, Shi W D, Guan J G. Chin J Catal (许蕾蕾,倪磊,施伟东,官建国.催化学报), 2012, 33: 1101

    88. [88]

      [88] Yu J G, Jin J, Cheng B, Jaroniec M. J Mater Chem A, 2014, 2: 3407

    89. [89]

      [89] Chai S N, Zhao G H, Zhang Y N, Wang Y J, Nong F Q, Li M F, Li D M. Environ Sci Technol, 2012, 46: 10182

    90. [90]

      [90] Yang L X, Luo S L, Li Y, Xiao Y, Kang Q, Cai Q Y. Environ Sci Technol, 2010, 44: 7641

    91. [91]

      [91] Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett, 2011, 11: 4774

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    11. [11]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    14. [14]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(0)
  • Abstract views(464)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return