Citation: Wuchen Ding, Weixue Li. A first principles study of the energetics and core level shifts of anion-doped TiO2 photocatalysts[J]. Chinese Journal of Catalysis, ;2015, 36(2): 181-187. doi: 10.1016/S1872-2067(14)60165-0 shu

A first principles study of the energetics and core level shifts of anion-doped TiO2 photocatalysts

  • Corresponding author: Weixue Li, 
  • Received Date: 16 May 2014
    Available Online: 9 June 2014

    Fund Project: 国家自然科学基金(21173210, 21225315, 21321002) (21173210, 21225315, 21321002) 国家重点基础研究发展计划(973计划, 2013CB834603) (973计划, 2013CB834603) 中国科学院战略性先导科技专项(XDA09030000). (XDA09030000)

  • We present a comprehensive and improved density functional theory (DFT) calculation of anion-doped (anion = B, C, N, F, P, S) anatase and rutile TiO2. The first part is a first principles calculation of the core level shifts (CLS) for various anion dopants in both anatase and rutile TiO2. The CLS results revealed that interstitial N had a higher N 1s binding energy than substitutional N, which agreed well with experimental results. The calculation also showed that for B-, C-, S-, and P-doped TiO2, the interstitial dopant had an energy that is higher than that of a substitutional dopant, which is similar to N-doped TiO2. However, for F-doped TiO2, the energy of the substitutional dopant is higher, and this is irrespective of the TiO2 crystallography. We also calculated the enthalpy of doping and found that the substitutional dopant had a higher enthalpy than the interstitial dopant. The results revealed that substitutional doping required severe experimental conditions, whereas interstitial doping only requires modest wet chemistry conditions.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972, 238: 37

    2. [2]

      [2] Fujishima A, Rao T N, Tryk D A. J Photochem Photobiol C, 2000, 1: 1

    3. [3]

      [3] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    4. [4]

      [4] Khan S U M, Al-Shahry M, Ingler W B Jr. Science, 2002, 297: 2243

    5. [5]

      [5] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891

    6. [6]

      [6] Lindgren T, Mwabora J M, Avendano E, Jonsson J, Hoel A, Granqvist C G, Lindquist S E. J Phys Chem B, 2003, 107: 5709

    7. [7]

      [7] Mwabora J M, Lindgren T, Avendano E, Jaramillo T F, Lu J, Lindquist S E, Granqvist C G. J Phys Chem B, 2004, 108: 20193

    8. [8]

      [8] Nakano Y, Morikawa T, Ohwaki T, Taga Y. Appl Phys Lett, 2005, 86: 132104

    9. [9]

      [9] Diwald O, Thompson T L, Goralski E G, Walck S D, Yates J T Jr. J Phys Chem B, 2004, 108: 52

    10. [10]

      [10] Batzill M, Morales E H, Diebold U. Phys Rev Lett, 2006, 96: 026103

    11. [11]

      [11] Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P. Nano Lett, 2006, 6: 1080

    12. [12]

      [12] Irie H, Watanabe Y, Hashimoto K. J Phys Chem B, 2003, 107: 5483

    13. [13]

      [13] Yu J G, Yu J C, Leung M K P, Ho W, Cheng B, Zhao X J, Zhao J C. J Catal, 2003, 217: 69

    14. [14]

      [14] Burda C, Lou Y B, Chen X B, Samia A C S, Stout J, Gole J L. Nano Lett, 2003, 3: 1049

    15. [15]

      [15] Sakthivel S, Janczarek M, Kisch H. J Phys Chem B, 2004, 108: 19384

    16. [16]

      [16] Gole J L, Stout J D, Burda C, Lou Y B, Chen X B. J Phys Chem B, 2004, 108: 1230

    17. [17]

      [17] Wang Z P, Cai W M, Hong X T, Zhao X L, Xu F, Cai C G. Appl Catal B, 2005, 57: 223

    18. [18]

      [18] Li H X, Li J X, Huo Y N. J Phys Chem B, 2006, 110: 1559

    19. [19]

      [19] Livraghi S, Paganini M C, Giamello E, Selloni A, Di Valentin C, Pacchioni G. J Am Chem Soc, 2006, 128: 15666

    20. [20]

      [20] Kisch H, Sakthivel S, Janczarek M, Mitoraj D. J Phys Chem C, 2007, 111: 11445

    21. [21]

      [21] Cong Y, Zhang J L, Chen F, Anpo M. J Phys Chem C, 2007, 111: 6976

    22. [22]

      [22] Wang J W, Zhu W, Zhang Y Q, Liu S X. J Phys Chem C, 2007, 111: 1010

    23. [23]

      [23] Fang J, Wang F, Qian K, Bao H Z, Jiang Z Q, Huang W X. J Phys Chem C, 2008, 112: 18150

    24. [24]

      [24] Huo Y N, Bian Z F, Zhang X Y, Jin Y, Zhu J, Li H X. J Phys Chem C, 2008, 112: 6546

    25. [25]

      [25] Joung S K, Amemiya T, Murabayashi M, Itoh K. Appl Catal A, 2006, 312: 20

    26. [26]

      [26] Liu G, Li F, Chen Z G, Lu G Q, Cheng H M. J Solid State Chem, 2006, 179: 331

    27. [27]

      [27] He F, Ma X F, Li T, Li G X. Chin J Catal (何菲, 马秀芳, 李涛, 李光兴. 催化学报), 2013, 34: 2263

    28. [28]

      [28] Mohamed R M, Aazam E. Chin J Catal (催化学报), 2013, 34: 1267

    29. [29]

      [29] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250

    30. [30]

      [30] Liu E Q, Guo X L, Qin L, Shen G D, Wang X D. Chin J Catal (刘二强, 郭晓玲, 秦雷, 申国栋, 王向东. 催化学报), 2012, 33: 1665

    31. [31]

      [31] Serpone N. J Phys Chem B, 2006, 110: 24287

    32. [32]

      [32] Chen X B, Burda C. J Phys Chem B, 2004, 108: 15446

    33. [33]

      [33] Rodriguez J A, Jirsak T, Liu G, Hrbek J, Dvorak J, Maiti A. J Am Chem Soc, 2001, 123: 9597

    34. [34]

      [34] Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H. J Phys Chem C, 2007, 111: 11836

    35. [35]

      [35] Zaleska A, Sobczak J W, Grabowska E, Hupka J. Appl Catal B, 2008, 78: 92

    36. [36]

      [36] Finazzi E, Di Valentin C, Pacchioni G. J Phys Chem C, 2009, 113: 220

    37. [37]

      [37] Bettinelli M, Dallacasa V, Falcomer D, Fornasiero P, Gombac V, Montini T, Romano L, Speghini A. J Hazard Mater, 2007, 146: 529

    38. [38]

      [38] Chen D M, Yang D, Wang Q, Jiang Z Y. Ind Eng Chem Res, 2006, 45: 4110

    39. [39]

      [39] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126: 4782

    40. [40]

      [40] Moon S C, Mametsuka H, Tabata S, Suzuki E. Catal Today, 2000, 58: 125

    41. [41]

      [41] Czoska A M, Livraghi S, Paganini M C, Giamello E, Di Valentin C, Pacchioni G. Phys Chem Phys Chem, 2011, 13: 136

    42. [42]

      [42] Di Valentin C, Pacchioni G, Onishi H, Kudo A. Chem Phys Lett, 2009, 469: 166

    43. [43]

      [43] Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Czoska A M, Paganini M C, Giamello E. Chem Mater, 2008, 20: 3706

    44. [44]

      [44] Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E. Chem Phys, 2007, 339: 44

    45. [45]

      [45] Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E. J Phys Chem B, 2005, 109: 11414

    46. [46]

      [46] Di Valentin C, Pacchioni G, Selloni A. Chem Mater, 2005, 17: 6656

    47. [47]

      [47] Heyd J, Scuseria G E, Ernzerhof M. J Chem Phys, 2006, 124: 219906

    48. [48]

      [48] Heyd J, Scuseria G E. J Chem Phys, 2004, 121: 1187

    49. [49]

      [49] Heyd J, Scuseria G E, Ernzerhof M. J Chem Phys, 2003, 118: 8207

    50. [50]

      [50] Kresse G, Hafner J. Phys Rev B, 1993, 48: 13115

    51. [51]

      [51] Kresse G, Hafner J. Phys Rev B, 1994, 49: 14251

    52. [52]

      [52] Kresse G, Furthmuller J. Phys Rev B, 1996, 54: 11169

    53. [53]

      [53] Kresse G, Furthmuller J. Comput Mater Sci, 1996, 6: 15

    54. [54]

      [54] Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E. J Chem Phys, 2006, 125: 224106

    55. [55]

      [55] Slater J C. J Chem Phys, 1964, 41: 3199

    56. [56]

      [56] Allred A L. J Inorg Nucl Chem, 1961, 17: 215

    57. [57]

      [57] Saha N C, Tompkins H G. J Appl Phys, 1992, 72: 3072

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(337)
  • Abstract views(550)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return