Citation: Zhengwei Luo, Hui Jiang, Longzhi Hu, Dan Li, Wenhua Geng, Ping Wei. Effect of N2/Ar plasma treatment on the visible light photocatalytic activity of CuO/TiO2[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1752-1760. doi: 10.1016/S1872-2067(14)60143-1 shu

Effect of N2/Ar plasma treatment on the visible light photocatalytic activity of CuO/TiO2

  • Corresponding author: Wenhua Geng, 
  • Received Date: 27 March 2014
    Available Online: 12 May 2014

    Fund Project:

  • The effect of N2/Ar dielectric barrier discharge plasma on the photocatalytic activity of CuO/TiO2 under visible light irradiation was studied. The photocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectrophotometry, transmission electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy. The plasma parameters including gas composition, treatment time, and plasma power were investigated. The activities of the plasma-treated photocatalysts were evaluated by the photodegradation of methyl orange under visible light illumination. The optimal operation conditions were N2:Ar = 8:2, treatment time of 20 min, and a discharge current of 1.0 A. Simulated mercury-containing wastewater was treated by the photocatalysts.
  • 加载中
    1. [1]

      [1] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891

    2. [2]

      [2] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    3. [3]

      [3] Zou Z, Ye J H, Sayama K, Arakawa H. Nature, 2001, 414: 625

    4. [4]

      [4] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    5. [5]

      [5] Morikawa T, Irokawa Y, Ohwaki T. Appl Catal A, 2006, 314: 123

    6. [6]

      [6] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418

    7. [7]

      [7] Trejo-Tzab R, Alvarado-Gil J J, Quintana P, Bartolo-Pérez P. Catal Today, 2012, 193: 179

    8. [8]

      [8] Wang M Y, Sun L, Lin Z Q, Cai J H, Xie K P, Lin C J. Energy Environ Sci, 2013, 6: 1211

    9. [9]

      [9] Cheng W Y, Yu T H, Chao K J, Lu S Y. ChemCatChem, 2014, 6: 293

    10. [10]

      [10] Livraghi S, Paganini M C, Giamello E, Selloni A, Di Valentin C, Pacchioni G. J Am Chem Soc, 2006, 128: 15666

    11. [11]

      [11] Liu G, Yang H G, Wang X W, Cheng L N, Pan J, Lu G Q, Cheng H M. J Am Chem Soc, 2009, 131: 12868

    12. [12]

      [12] Shankar K, Tep K C, Mor G K, Grimes C A. J Phys D, 2006, 39: 2361

    13. [13]

      [13] Shen H, Mi L, Xu P, Shen W D, Wang P N. Appl Surf Sci, 2007, 253: 7024

    14. [14]

      [14] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250

    15. [15]

      [15] Pulsipher D J V, Martin I T, Fisher E R. ACS Appl Mater Interfaces, 2010, 2: 1743

    16. [16]

      [16] Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K. J Mol Catal A, 2000, 161: 205

    17. [17]

      [17] Huang C M, Chen L C, Cheng K W, Pan G T. J Mol Catal A, 2007, 261: 218

    18. [18]

      [18] Chae Y K, Mori S, Suzuki M. Thin Solid Films, 2009, 517: 4260

    19. [19]

      [19] Hu S Z, Li F Y, Fan Z P. J Hazard Mater, 2011, 196: 248

    20. [20]

      [20] Kawakami R, Niibe M, Takeichi A, Mori Y, Konishi M, Kotaka T, Matsunaga F, Takasaki T, Kitano T, Miyazaki T, Inaoka T, Tominaga K. Jpn J Appl Phys, 2012, 51: 08HB04

    21. [21]

      [21] Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Appl Catal B, 2010, 100: 386

    22. [22]

      [22] Liu L C, Gu X R, Sun C Z, Li H, Deng Y, Gao F, Dong L. Nanoscale, 2012, 4: 6351

    23. [23]

      [23] Qiu X Q, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K. ACS nano, 2012, 6: 1609

    24. [24]

      [24] Banerjee S, Chakravorty D. EPL (Europhysics Letters), 2000, 52: 468

    25. [25]

      [25] Irie H, Miura S, Kamiya K, Hashimoto K. Chem Phys Lett, 2008, 457: 202

    26. [26]

      [26] Xing J, Chen Z P, Xiao F Y, Ma X Y, Wen C Z, Li Z, Yang H G. Chem Asia J, 2013, 8: 1265

    27. [27]

      [27] Yamada K, Yamane H, Matsushima S, Nakamura H, Ohira K, Kouya M, Kumada K. Thin Solid Films, 2008, 516: 7482

    28. [28]

      [28] Cheung S H, Nachimuthu P, Joly A G, Engelhard M H, Bowman M K, Chambers S A. Surf Sci, 2007, 601: 1754

    29. [29]

      [29] Viswanathan B, Krishanmurthy K R. Int J Photoenergy, 2012, 2012: 10

    30. [30]

      [30] Strunk J, Vining W C, Bell A T. J Phys Chem C, 2010, 114: 16937

    31. [31]

      [31] Wang W, Ni Y R, Lu C H, Xu Z Z. Appl Surf Sci, 2014, 290: 125

    32. [32]

      [32] Li Q, Zhu X M, Li J T, Pu Y K. J Appl Phys, 2010, 107: 43304

    33. [33]

      [33] El-Zeer D M, Dawood N, Elakshar F, Garamoon A A. Eur Phys J-Appl Phys, 2012, 58: 30801

    34. [34]

      [34] Harris D C. Quantitative Chemical Analysis. New York: Macmillan, 2010

    35. [35]

      [35] López-Muoz M J, Aguado J, Arencibia A, Pascual R. Appl Catal B, 2011, 104: 220

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(0)
  • Abstract views(469)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return