Citation:
Claudio Ampelli, Siglinda Perathoner, Gabriele Centi. Carbon-based catalysts:Opening new scenario to develop next-generation nano-engineered catalytic materials[J]. Chinese Journal of Catalysis,
;2014, 35(6): 783-791.
doi:
10.1016/S1872-2067(14)60139-X
-
This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and architecture), with reference to their use as advanced catalytic materials. It is remarked how their features open new possibilities for catalysis and that they represent a new class of catalytic materials. Although carbon is used from long time in catalysis as support and electrocatalytic applications, nanocarbons offer unconventional ways for their utilization and to address some of the new challenges deriving from moving to a more sustainable future. This essay comments how nanocarbons are a key element to develop next-generation catalytic materials, but remarking that this goal requires overcoming some of the actual limits in current research. Some aspects are discussed to give a glimpse on new directions and needs for R&D to progress in this direction.
-
-
-
[1]
[1] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782
-
[2]
[2] Mleczko L, Lolli G. Angew Chem Int Ed, 2013, 52: 9372
-
[3]
[3] Vilatela J J, Eder D. ChemSusChem, 2012, 5: 456
-
[4]
[4] Su C L, Loh K P. Acc Chem Res, 2013, 46: 2275
-
[5]
[5] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233
-
[6]
[6] Jüntgen H. Fuel, 1986, 65: 1436
-
[7]
[7] Rodríguez-Reinoso F. Carbon, 1998, 36: 159
-
[8]
[8] Reimerink W M T M. Stud Surf Sci Catal, 1999, 120A: 751
-
[9]
[9] Dreyer D R, Jia H P, Bielawski C W. Angew Chem Int Ed, 2010, 49: 6813
-
[10]
[10] Schaetz A, Zeltner M, Stark W J. ACS Catal, 2012, 2: 1267
-
[11]
[11] Su C L, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Loh K P. Nature Commun, 2012, 3:1298
-
[12]
[12] Centi G, Perathoner S. Catal Today, 2010, 150: 151
-
[13]
[13] Centi G, Perathoner S. ChemSusChem, 2011, 4: 913
-
[14]
[14] Bitter J H. J Mater Chem, 2010, 20: 7312
-
[15]
[15] Su D S, Schlögl R. ChemSusChem, 2010, 3: 136
-
[16]
[16] Umeyama T, Imahori H. J Phys Chem C, 2013, 117: 3195
-
[17]
[17] Wang D W, Su D S. Energy Environ Sci, 2014, 7: 576
-
[18]
[18] Sun H Q, Wang S B. Energy Fuels, 2014, 28: 22
-
[19]
[19] Centi G, Perathoner S. Eur J Inorg Chem, 2009, (26): 3851
-
[20]
[20] Centi G, Perathoner S. Coord Chem Rev, 2011, 255: 1480
-
[21]
[21] Wang H L, Dai H J. Chem Soc Rev, 2013, 42: 3088
-
[22]
[22] Guerra J, Herrero M A. Nanoscale, 2010, 2: 1390
-
[23]
[23] Conley M P, Coperet C, Thieuleux C. ACS Catal, 2014, 4: 1458
-
[24]
[24] Li H Q, Song S I, Song G Y, Kim I. J Nanosci Nanotechnol, 2014, 14: 1425
-
[25]
[25] Calvaresi M, Zerbetto F. Acc Chem Res, 2013, 46: 2454
-
[26]
[26] Yu G H, Xie X, Pan L J, Bao Z A, Cui Y. Nano Energy, 2013, 2: 213
-
[27]
[27] Liang Y Y, Li Y G, Wang H L, Dai H J. J Am Chem Soc, 2013, 135: 2013
-
[28]
[28] Centi G, Perathoner S. In: Nanocarbon-Inorganic Hybrids, Ch. 17. Berlin (Germany): De Gruyter, 2014. In press
-
[29]
[29] Su D S, Centi G. Nanoporous Materials for Energy and the Environment. Singapore: Pan Stansford Pub, 2012. 173
-
[30]
[30] Mao S, Lu G H, Chen J H. J Mater Chem A, 2014, 2: 5573
-
[31]
[31] Ito O, D'Souza F. ECS J Solid State Science Technol, 2013, 2: M3063
-
[32]
[32] Dirian K, Herranz M A, Katsukis G, Malig J, Rodriguez-Perez L, Romero-Nieto C, Strauss V, Martin N, Guldi D M. Chem Sci, 2013, 4: 4335
-
[33]
[33] Wang Q H, Bellisario D O, Drahushuk L W, Jain R M, Kruss S, Landry M P, Mahajan S G, Shimizu S F E, Ulissi Z W, Strano M S. Chem Mater, 2014, 26: 172
-
[34]
[34] Patel V. Global Carbon Nanotubes Market-Industry Beckons. Nanowerk Spotlight, 2013
-
[35]
[35] Perathoner S, Centi G. ChemSusChem, 2014, DOI: 10.1002/ cssc.201300926
-
[36]
[36] Lanzafame P, Centi G, Perathoner S. Chem Soc Rev, 2014, DOI: 10.1039/C3CS60396B
-
[37]
[37] Lanzafame P, Centi G, Perathoner S. Catal Today, 2014, DOI: 10.1016/j.cattod.2014.03.022
-
[38]
[38] Perathoner S, Centi G. J Chinese Chem Soc, 2014, DOI: 10.1002/ jccs.201400080
-
[39]
[39] Centi G, Iaquaniello G, Perathoner S. ChemSusChem, 2011, 4: 1265
-
[40]
[40] Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. ChemSusChem, 2012, 5: 500
-
[41]
[41] Genovese C, Ampelli C, Perathoner S, Centi G. J Energy Chem, 2013, 22: 202
-
[42]
[42] Ampelli C, Passalacqua R, Genovese C, Perathoner S, Centi G. Chem Eng Trans, 2011, 25: 683
-
[43]
[43] Ampelli C, Passalacqua R, Perathoner S, Centi G. Chem Eng Trans, 2009, 17: 1011
-
[44]
[44] Genovese C, Ampelli C, Perathoner S, Centi G. J Catal, 2013, 308: 237
-
[45]
[45] Su D S, Centi G. J Energy Chem, 2013, 22:151
-
[46]
[46] Cavani F, Centi G, Perathoner S, Trifirò F. Sustainable Industrial Chemistry: Principles, Tools and Industrial Examples. Germany: Wiley-VCH, 2009
-
[47]
[47] Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M. J Am Chem Soc, 2011, 133: 5129Centi G, van Santen R A. Catalysis for Renewables. Germany: Wiley-VCH, 2007
-
[48]
[49] Arrigo R, Schuster M E, Abate S, Wrabetz S, Amakawa K, Teschner D, Freni M, Centi G, Perathoner S, Hävecker M, Schlögl R. ChemSusChem, 2014, 7: 179
-
[49]
[50] Abate S, Freni M, Arrigo R, Schuster M E, Perathoner S, Centi G. ChemCatChem, 2013, 5: 1899
-
[50]
[51] Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo J W, Courtin C M, Gaigneaux E M, Jacobs P A, Sels B F. ChemSusChem, 2012, 5: 1549
-
[51]
[52] Tessonnier J P, Villa A, Majoulet O, Su D S, Schlögl R. Angew Chem Int Ed, 2009, 48: 6543
-
[52]
[53] Rios G, Centi G, Kanellopoulos K. Nanoporous materials for energy and the environment. Singapore: Pan Stanford Pub, 2012
-
[53]
[54] Bhadra M, Roy S, Mitra S. Desalination, 2014, 341: 115
-
[54]
[55] Daems N, Sheng X, Vankelecom I F J, Pescarmona P P. J Mater Chem A, 2014, 2: 4085
-
[55]
[56] Wu G, Zelenay P. Acc Chem Res, 2013, 46: 1878
-
[56]
[57] Yang Z, Nie H G, Chen X A, Chen X H, Huang S M. J Power Sources, 2013, 236: 238
-
[57]
[58] Zheng Y, Jiao Y, Jaroniec M, Jin Y G, Qiao S Z. Small, 2012, 8: 3550
-
[58]
[59] Maldonado-Hodar F J. Catal Today, 2013, 218
-
[59]
[60] White R J, Brun N, Budarin V L, Clark J H, Titirici M M. Chem-SusChem, 2014, 7: 670
-
[60]
[61] Centi G, Perathoner S. In: Comprehensive Inorganic Chemistry II, Section 7.18 "Mixed-Metal Oxides", 2014, DOI: 10.1016/B978-0-08-097774-4.00718-X
-
[61]
[62] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169
-
[62]
[63] Sun X Y, Wang R, Su D S. Chin J Catal (孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34: 508
-
[63]
[64] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165
-
[64]
[65] Zhang M, Dai L M. Nano Energy, 2012, 1: 514
-
[65]
[66] Tessonnier J P, Su D S. ChemSusChem, 2011, 4: 824
-
[66]
[67] Serp P, Corrias M, Kalck P. Appl Catal A, 2003, 253: 337
-
[67]
[68] Frank B, Rinaldi A, Blume R, Schlögl R, Su D S. Chem Mater, 2010, 22: 4462
-
[68]
[69] Villa A, Wang D, Dimitratos N, Su D S, Trevisan V, Prati L. Catal Today, 2010, 150: 8
-
[69]
[70] Aksel S, Eder D. J Mater Chem, 2010, 20: 9149
-
[70]
[71] Bandaru P R. J Nanosci Nanotechnol, 2007, 7: 1239
-
[71]
[72] Wen M, Sun X J, Su L, Shen J B, Li J, Guo S Y. Polymer, 2012, 53: 1602
-
[72]
[73] Lei Y, Yeong K S, Thong J T L, Chim W K. Chem Mater, 2004, 16: 2757
-
[73]
[74] Wang D W, Li F, Liu M, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 373
-
[74]
[75] Zeng Q C, Wu D C, Zou C, Xu F, Fu R W, Li Z H, Liang Y R, Su D S. Chem Commun, 2010, 46: 5927
-
[75]
[76] Zhang J, Wang R, Liu E Z, Gao X F, Sun Z H, Xiao F S, Girgsdies F, Su D S. Angew Chem Int Ed, 2012, 51: 7581
-
[76]
[77] Ma H L, Su D S, Klein-Hoffmann A, Jin G Q, Guo X Y. Carbon, 2006, 44: 2254
-
[77]
[78] Zhang J, Hu Y S, Tessonnier J P, Weinberg G, Maier J, Schlögl R, Su D S. Adv Mater, 2008, 20: 1450
-
[78]
[79] Yuan Q H, Xu Z P, Yakobson B I, Ding F. Phys Rev Lett, 2012, 108: 245505/1
-
[79]
[80] Kim J, Page A J, Irle S, Morokuma K. J Am Chem Soc, 2012, 134: 9311
-
[80]
[81] Hembram K P S S, Rao G M. Mater Lett, 2012, 72: 68
-
[81]
[82] Carlsson J M, Scheffler M. Phys Rev Lett, 2006, 96: 046 806/1
-
[82]
[83] Tessonnier J P, Villa A, Majoulet O, Su D S, Schlögl R. Angew Chem Int Ed, 2009, 48: 6543
-
[83]
[84] Chen C Y, Jafvert C T. Environ Science Technol, 2010, 44: 6674
-
[84]
[85] Luo Y S, Heng Y F, Dai X J, Chen W Q, Li J L. J Solid State Chem, 2009, 182: 2521
-
[85]
[86] Centi G, Gangeri M, Fiorello M, Perathoner S, Amadou J, Bégin D, Ledoux M J, Pham-Huu C, Schuster M E, Su D S, Tessonnier J-P, Schlögl R. Catal Today, 2009, 147: 287
-
[86]
[87] Moldovan M S, Bulou H, Dappe Y J, Janowska I, Bégin D, Pham-Huu C, Ersen O. J Phys Chem C, 2012, 116: 9274
-
[1]
-
-
-
[1]
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
-
[2]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[3]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[4]
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
-
[5]
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
-
[6]
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
-
[7]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[8]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[9]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[10]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[11]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[12]
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
-
[13]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[14]
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
-
[15]
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
-
[16]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[17]
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
-
[18]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[19]
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
-
[20]
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
-
[1]
Metrics
- PDF Downloads(221)
- Abstract views(572)
- HTML views(52)