Citation: Claudio Ampelli, Siglinda Perathoner, Gabriele Centi. Carbon-based catalysts:Opening new scenario to develop next-generation nano-engineered catalytic materials[J]. Chinese Journal of Catalysis, ;2014, 35(6): 783-791. doi: 10.1016/S1872-2067(14)60139-X shu

Carbon-based catalysts:Opening new scenario to develop next-generation nano-engineered catalytic materials

  • Corresponding author: Siglinda Perathoner, 
  • Received Date: 12 May 2014

    Fund Project: This work was supported by MIUR/Italy (PRIN10-11 Project Mechanisms of CO2 Activation). (PRIN10-11 Project Mechanisms of CO2 Activation)

  • This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and architecture), with reference to their use as advanced catalytic materials. It is remarked how their features open new possibilities for catalysis and that they represent a new class of catalytic materials. Although carbon is used from long time in catalysis as support and electrocatalytic applications, nanocarbons offer unconventional ways for their utilization and to address some of the new challenges deriving from moving to a more sustainable future. This essay comments how nanocarbons are a key element to develop next-generation catalytic materials, but remarking that this goal requires overcoming some of the actual limits in current research. Some aspects are discussed to give a glimpse on new directions and needs for R&D to progress in this direction.
  • 加载中
    1. [1]

      [1] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    2. [2]

      [2] Mleczko L, Lolli G. Angew Chem Int Ed, 2013, 52: 9372

    3. [3]

      [3] Vilatela J J, Eder D. ChemSusChem, 2012, 5: 456

    4. [4]

      [4] Su C L, Loh K P. Acc Chem Res, 2013, 46: 2275

    5. [5]

      [5] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233

    6. [6]

      [6] Jüntgen H. Fuel, 1986, 65: 1436

    7. [7]

      [7] Rodríguez-Reinoso F. Carbon, 1998, 36: 159

    8. [8]

      [8] Reimerink W M T M. Stud Surf Sci Catal, 1999, 120A: 751

    9. [9]

      [9] Dreyer D R, Jia H P, Bielawski C W. Angew Chem Int Ed, 2010, 49: 6813

    10. [10]

      [10] Schaetz A, Zeltner M, Stark W J. ACS Catal, 2012, 2: 1267

    11. [11]

      [11] Su C L, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Loh K P. Nature Commun, 2012, 3:1298

    12. [12]

      [12] Centi G, Perathoner S. Catal Today, 2010, 150: 151

    13. [13]

      [13] Centi G, Perathoner S. ChemSusChem, 2011, 4: 913

    14. [14]

      [14] Bitter J H. J Mater Chem, 2010, 20: 7312

    15. [15]

      [15] Su D S, Schlögl R. ChemSusChem, 2010, 3: 136

    16. [16]

      [16] Umeyama T, Imahori H. J Phys Chem C, 2013, 117: 3195

    17. [17]

      [17] Wang D W, Su D S. Energy Environ Sci, 2014, 7: 576

    18. [18]

      [18] Sun H Q, Wang S B. Energy Fuels, 2014, 28: 22

    19. [19]

      [19] Centi G, Perathoner S. Eur J Inorg Chem, 2009, (26): 3851

    20. [20]

      [20] Centi G, Perathoner S. Coord Chem Rev, 2011, 255: 1480

    21. [21]

      [21] Wang H L, Dai H J. Chem Soc Rev, 2013, 42: 3088

    22. [22]

      [22] Guerra J, Herrero M A. Nanoscale, 2010, 2: 1390

    23. [23]

      [23] Conley M P, Coperet C, Thieuleux C. ACS Catal, 2014, 4: 1458

    24. [24]

      [24] Li H Q, Song S I, Song G Y, Kim I. J Nanosci Nanotechnol, 2014, 14: 1425

    25. [25]

      [25] Calvaresi M, Zerbetto F. Acc Chem Res, 2013, 46: 2454

    26. [26]

      [26] Yu G H, Xie X, Pan L J, Bao Z A, Cui Y. Nano Energy, 2013, 2: 213

    27. [27]

      [27] Liang Y Y, Li Y G, Wang H L, Dai H J. J Am Chem Soc, 2013, 135: 2013

    28. [28]

      [28] Centi G, Perathoner S. In: Nanocarbon-Inorganic Hybrids, Ch. 17. Berlin (Germany): De Gruyter, 2014. In press

    29. [29]

      [29] Su D S, Centi G. Nanoporous Materials for Energy and the Environment. Singapore: Pan Stansford Pub, 2012. 173

    30. [30]

      [30] Mao S, Lu G H, Chen J H. J Mater Chem A, 2014, 2: 5573

    31. [31]

      [31] Ito O, D'Souza F. ECS J Solid State Science Technol, 2013, 2: M3063

    32. [32]

      [32] Dirian K, Herranz M A, Katsukis G, Malig J, Rodriguez-Perez L, Romero-Nieto C, Strauss V, Martin N, Guldi D M. Chem Sci, 2013, 4: 4335

    33. [33]

      [33] Wang Q H, Bellisario D O, Drahushuk L W, Jain R M, Kruss S, Landry M P, Mahajan S G, Shimizu S F E, Ulissi Z W, Strano M S. Chem Mater, 2014, 26: 172

    34. [34]

      [34] Patel V. Global Carbon Nanotubes Market-Industry Beckons. Nanowerk Spotlight, 2013

    35. [35]

      [35] Perathoner S, Centi G. ChemSusChem, 2014, DOI: 10.1002/ cssc.201300926

    36. [36]

      [36] Lanzafame P, Centi G, Perathoner S. Chem Soc Rev, 2014, DOI: 10.1039/C3CS60396B

    37. [37]

      [37] Lanzafame P, Centi G, Perathoner S. Catal Today, 2014, DOI: 10.1016/j.cattod.2014.03.022

    38. [38]

      [38] Perathoner S, Centi G. J Chinese Chem Soc, 2014, DOI: 10.1002/ jccs.201400080

    39. [39]

      [39] Centi G, Iaquaniello G, Perathoner S. ChemSusChem, 2011, 4: 1265

    40. [40]

      [40] Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. ChemSusChem, 2012, 5: 500

    41. [41]

      [41] Genovese C, Ampelli C, Perathoner S, Centi G. J Energy Chem, 2013, 22: 202

    42. [42]

      [42] Ampelli C, Passalacqua R, Genovese C, Perathoner S, Centi G. Chem Eng Trans, 2011, 25: 683

    43. [43]

      [43] Ampelli C, Passalacqua R, Perathoner S, Centi G. Chem Eng Trans, 2009, 17: 1011

    44. [44]

      [44] Genovese C, Ampelli C, Perathoner S, Centi G. J Catal, 2013, 308: 237

    45. [45]

      [45] Su D S, Centi G. J Energy Chem, 2013, 22:151

    46. [46]

      [46] Cavani F, Centi G, Perathoner S, Trifirò F. Sustainable Industrial Chemistry: Principles, Tools and Industrial Examples. Germany: Wiley-VCH, 2009

    47. [47]

      [47] Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M. J Am Chem Soc, 2011, 133: 5129Centi G, van Santen R A. Catalysis for Renewables. Germany: Wiley-VCH, 2007

    48. [48]

      [49] Arrigo R, Schuster M E, Abate S, Wrabetz S, Amakawa K, Teschner D, Freni M, Centi G, Perathoner S, Hävecker M, Schlögl R. ChemSusChem, 2014, 7: 179

    49. [49]

      [50] Abate S, Freni M, Arrigo R, Schuster M E, Perathoner S, Centi G. ChemCatChem, 2013, 5: 1899

    50. [50]

      [51] Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo J W, Courtin C M, Gaigneaux E M, Jacobs P A, Sels B F. ChemSusChem, 2012, 5: 1549

    51. [51]

      [52] Tessonnier J P, Villa A, Majoulet O, Su D S, Schlögl R. Angew Chem Int Ed, 2009, 48: 6543

    52. [52]

      [53] Rios G, Centi G, Kanellopoulos K. Nanoporous materials for energy and the environment. Singapore: Pan Stanford Pub, 2012

    53. [53]

      [54] Bhadra M, Roy S, Mitra S. Desalination, 2014, 341: 115

    54. [54]

      [55] Daems N, Sheng X, Vankelecom I F J, Pescarmona P P. J Mater Chem A, 2014, 2: 4085

    55. [55]

      [56] Wu G, Zelenay P. Acc Chem Res, 2013, 46: 1878

    56. [56]

      [57] Yang Z, Nie H G, Chen X A, Chen X H, Huang S M. J Power Sources, 2013, 236: 238

    57. [57]

      [58] Zheng Y, Jiao Y, Jaroniec M, Jin Y G, Qiao S Z. Small, 2012, 8: 3550

    58. [58]

      [59] Maldonado-Hodar F J. Catal Today, 2013, 218

    59. [59]

      [60] White R J, Brun N, Budarin V L, Clark J H, Titirici M M. Chem-SusChem, 2014, 7: 670

    60. [60]

      [61] Centi G, Perathoner S. In: Comprehensive Inorganic Chemistry II, Section 7.18 "Mixed-Metal Oxides", 2014, DOI: 10.1016/B978-0-08-097774-4.00718-X

    61. [61]

      [62] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169

    62. [62]

      [63] Sun X Y, Wang R, Su D S. Chin J Catal (孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34: 508

    63. [63]

      [64] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165

    64. [64]

      [65] Zhang M, Dai L M. Nano Energy, 2012, 1: 514

    65. [65]

      [66] Tessonnier J P, Su D S. ChemSusChem, 2011, 4: 824

    66. [66]

      [67] Serp P, Corrias M, Kalck P. Appl Catal A, 2003, 253: 337

    67. [67]

      [68] Frank B, Rinaldi A, Blume R, Schlögl R, Su D S. Chem Mater, 2010, 22: 4462

    68. [68]

      [69] Villa A, Wang D, Dimitratos N, Su D S, Trevisan V, Prati L. Catal Today, 2010, 150: 8

    69. [69]

      [70] Aksel S, Eder D. J Mater Chem, 2010, 20: 9149

    70. [70]

      [71] Bandaru P R. J Nanosci Nanotechnol, 2007, 7: 1239

    71. [71]

      [72] Wen M, Sun X J, Su L, Shen J B, Li J, Guo S Y. Polymer, 2012, 53: 1602

    72. [72]

      [73] Lei Y, Yeong K S, Thong J T L, Chim W K. Chem Mater, 2004, 16: 2757

    73. [73]

      [74] Wang D W, Li F, Liu M, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 373

    74. [74]

      [75] Zeng Q C, Wu D C, Zou C, Xu F, Fu R W, Li Z H, Liang Y R, Su D S. Chem Commun, 2010, 46: 5927

    75. [75]

      [76] Zhang J, Wang R, Liu E Z, Gao X F, Sun Z H, Xiao F S, Girgsdies F, Su D S. Angew Chem Int Ed, 2012, 51: 7581

    76. [76]

      [77] Ma H L, Su D S, Klein-Hoffmann A, Jin G Q, Guo X Y. Carbon, 2006, 44: 2254

    77. [77]

      [78] Zhang J, Hu Y S, Tessonnier J P, Weinberg G, Maier J, Schlögl R, Su D S. Adv Mater, 2008, 20: 1450

    78. [78]

      [79] Yuan Q H, Xu Z P, Yakobson B I, Ding F. Phys Rev Lett, 2012, 108: 245505/1

    79. [79]

      [80] Kim J, Page A J, Irle S, Morokuma K. J Am Chem Soc, 2012, 134: 9311

    80. [80]

      [81] Hembram K P S S, Rao G M. Mater Lett, 2012, 72: 68

    81. [81]

      [82] Carlsson J M, Scheffler M. Phys Rev Lett, 2006, 96: 046 806/1

    82. [82]

      [83] Tessonnier J P, Villa A, Majoulet O, Su D S, Schlögl R. Angew Chem Int Ed, 2009, 48: 6543

    83. [83]

      [84] Chen C Y, Jafvert C T. Environ Science Technol, 2010, 44: 6674

    84. [84]

      [85] Luo Y S, Heng Y F, Dai X J, Chen W Q, Li J L. J Solid State Chem, 2009, 182: 2521

    85. [85]

      [86] Centi G, Gangeri M, Fiorello M, Perathoner S, Amadou J, Bégin D, Ledoux M J, Pham-Huu C, Schuster M E, Su D S, Tessonnier J-P, Schlögl R. Catal Today, 2009, 147: 287

    86. [86]

      [87] Moldovan M S, Bulou H, Dappe Y J, Janowska I, Bégin D, Pham-Huu C, Ersen O. J Phys Chem C, 2012, 116: 9274

  • 加载中
    1. [1]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    2. [2]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    3. [3]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    4. [4]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    5. [5]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    6. [6]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    7. [7]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    8. [8]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    9. [9]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    10. [10]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    11. [11]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    12. [12]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    13. [13]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    14. [14]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    15. [15]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    16. [16]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    17. [17]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    18. [18]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    19. [19]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    20. [20]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

Metrics
  • PDF Downloads(221)
  • Abstract views(572)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return