Citation: Yuesheng Dong, Leping Liu, Yongming Bao, Aiyu Hao, Ying Qin, Zujia Wen, Zhilong Xiu. Biotransformation of geniposide in Gardenia jasminoides to genipin by Trichoderma harzianum CGMCC 2979[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1534-1546. doi: 10.1016/S1872-2067(14)60134-0 shu

Biotransformation of geniposide in Gardenia jasminoides to genipin by Trichoderma harzianum CGMCC 2979

  • Corresponding author: Yuesheng Dong, 
  • Received Date: 14 February 2014
    Available Online: 4 April 2014

    Fund Project:

  • Trichoderma harzianum (T. harzianum) CGMCC 2979 was used to transform the geniposide in Gardenia jasminoides (G. jasminoides) to genipin, dispensing the use of purified enzyme and the extraction of geniposide from the raw material. At 30 ℃, pH 6.1, and an initial G. jasminoides concentration of 80 g dried fruit per liter of medium, the geniposide-to-genipin conversion rate reached 97.8% after 48 h of fermentation. The genipin was purified from the fermentation broth by a combined method of XAD-16N-resin and silica-gel chromatography, yielding a total recovery of 62.3%. A 74.4-kDa geniposide-β-glucosidase implicated in the transformation of geniposide to genipin was purified from T. harzianum CGMCC 2979. It had optimum activity at 50 ℃ and pH 4.0-5.0. The Km and Vmax of the enzyme for geniposide were 3.6 mmol/L and 775 μmol/h/mg protein, respectively. The simple, direct, and efficient biotransformation of geniposide in G. jasminoide to genipin by T. harzianum CGMCC 2979 that is described in this study could represent an alternative and effective method for producing genipin.
  • 加载中
    1. [1]

      [1] Jeon W K, Hong H Y, Kim B C. Arch Biochem Biophys, 2011, 512: 119

    2. [2]

      [2] Koo H J, Lim K H, Jung H J, Park E H. J Ethnopharmacol, 2006, 103: 496

    3. [3]

      [3] Zhang C Y, Parton L E, Ye C P, Krauss S, Shen R C, Lin C T, Porco J A, Lowell B B. Cell Metab, 2006, 3: 417

    4. [4]

      [4] Kim S J, Kim J K, Lee D U, Kwak J H, Lee S M. Eur J Pharmacol, 2010, 635: 188

    5. [5]

      [5] Bi L, Cao Z, Hu Y Y, Song Y, Yu L, Yang B, Mu J H, Huang Z S, Han Y S. J Mater Sci-Mater Med, 2011, 22: 51

    6. [6]

      [6] Liang H Z, Chen H, Wang J F, He Y L. Adv Mater Res, 2011, 236: 1793

    7. [7]

      [7] Haag J, Baiguera S, Jungebluth P, Barale D, Del Gaudio C, Castiglione F, Bianco A, Comin C E, Ribatti D, Macchiarini P. Biomaterials, 2012, 33: 780

    8. [8]

      [8] Jelly R, Patton E L T, Lennard C, Lewis S W, Lim K F. Anal Chim Acta, 2009, 652: 128

    9. [9]

      [9] Gong G H, Zheng Z M, Liu H, Wang L, Diao J S, Wang P, Zhao G H. J Microbiol Biotechnol, 2014, 24: 788

    10. [10]

      [10] Winotapun W, Opanasopit P, Ngawhirunpat T, Rojanarata T. Enzyme Microb Technol, 2013, 53: 92

    11. [11]

      [11] Fu Y S, Zhang P, Chen C. J Beijing Univ Chem Technol (Natur Sci) (付岩帅, 张鹏, 陈畅. 北京化工大学学报(自然科学版)), 2011, 38: 81

    12. [12]

      [12] Yang Y S, Zhang T, Yu S C, Ding Y, Zhang L Y, Qiu C, Jin D. Molecules, 2011, 16: 4295

    13. [13]

      [13] Lee S W, Lim J M, Bhoo S H, Paik Y S, Hahn T R. Anal Chim Acta, 2003, 480: 267

    14. [14]

      [14] Liu L, Dong Y S, Qi S S, Wang H, Xiu Z L. Appl Microbiol Biotechnol, 2010, 85: 933

    15. [15]

      [15] Xu M M, Sun Q, Su J, Wang J F, Xu C, Zhang T, Sun Q L. Enzyme Microb Technol, 2008, 42: 440

    16. [16]

      [16] Wang H, Liu L, Guo Y X, Dong Y S, Zhang D J, Xiu Z L. Appl Microbiol Biotechnol, 2007, 75: 763

    17. [17]

      [17] Dong Y S, Teng H, Qi S S, Liu L, Wang H, Zhao Y K, Xiu Z L. Biochem Eng J, 2010, 52: 123

    18. [18]

      [18] Qi S S, Dong Y S, Zhao Y K, Xiu Z L. Chromatographia, 2009, 69: 865

    19. [19]

      [19] Zhang C Z, Yu H S, Bao Y M, An L J, Jin F X. Chem Pharm Bull, 2001, 49: 795

    20. [20]

      [20] Jia G J, Lu X Y. J Chromatogr A, 2008, 1193: 136

    21. [21]

      [21] Seyis I, Aksoz N. Int Biodeterior Biodegrad, 2005, 55: 115

    22. [22]

      [22] Yang L, Akao T, Kobashi K. Biol Pharm Bull, 1995, 18: 1175

    23. [23]

      [23] Yun S I, Jeong C S, Chung D K, Choi H S. Biosci biotechnol biochem, 2001, 65: 2028

  • 加载中
    1. [1]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    2. [2]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    3. [3]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    6. [6]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    20. [20]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

Metrics
  • PDF Downloads(0)
  • Abstract views(1020)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return