Citation:
Yuesheng Dong, Leping Liu, Yongming Bao, Aiyu Hao, Ying Qin, Zujia Wen, Zhilong Xiu. Biotransformation of geniposide in Gardenia jasminoides to genipin by Trichoderma harzianum CGMCC 2979[J]. Chinese Journal of Catalysis,
;2014, 35(9): 1534-1546.
doi:
10.1016/S1872-2067(14)60134-0
-
Trichoderma harzianum (T. harzianum) CGMCC 2979 was used to transform the geniposide in Gardenia jasminoides (G. jasminoides) to genipin, dispensing the use of purified enzyme and the extraction of geniposide from the raw material. At 30 ℃, pH 6.1, and an initial G. jasminoides concentration of 80 g dried fruit per liter of medium, the geniposide-to-genipin conversion rate reached 97.8% after 48 h of fermentation. The genipin was purified from the fermentation broth by a combined method of XAD-16N-resin and silica-gel chromatography, yielding a total recovery of 62.3%. A 74.4-kDa geniposide-β-glucosidase implicated in the transformation of geniposide to genipin was purified from T. harzianum CGMCC 2979. It had optimum activity at 50 ℃ and pH 4.0-5.0. The Km and Vmax of the enzyme for geniposide were 3.6 mmol/L and 775 μmol/h/mg protein, respectively. The simple, direct, and efficient biotransformation of geniposide in G. jasminoide to genipin by T. harzianum CGMCC 2979 that is described in this study could represent an alternative and effective method for producing genipin.
-
-
-
[1]
[1] Jeon W K, Hong H Y, Kim B C. Arch Biochem Biophys, 2011, 512: 119
-
[2]
[2] Koo H J, Lim K H, Jung H J, Park E H. J Ethnopharmacol, 2006, 103: 496
-
[3]
[3] Zhang C Y, Parton L E, Ye C P, Krauss S, Shen R C, Lin C T, Porco J A, Lowell B B. Cell Metab, 2006, 3: 417
-
[4]
[4] Kim S J, Kim J K, Lee D U, Kwak J H, Lee S M. Eur J Pharmacol, 2010, 635: 188
-
[5]
[5] Bi L, Cao Z, Hu Y Y, Song Y, Yu L, Yang B, Mu J H, Huang Z S, Han Y S. J Mater Sci-Mater Med, 2011, 22: 51
-
[6]
[6] Liang H Z, Chen H, Wang J F, He Y L. Adv Mater Res, 2011, 236: 1793
-
[7]
[7] Haag J, Baiguera S, Jungebluth P, Barale D, Del Gaudio C, Castiglione F, Bianco A, Comin C E, Ribatti D, Macchiarini P. Biomaterials, 2012, 33: 780
-
[8]
[8] Jelly R, Patton E L T, Lennard C, Lewis S W, Lim K F. Anal Chim Acta, 2009, 652: 128
-
[9]
[9] Gong G H, Zheng Z M, Liu H, Wang L, Diao J S, Wang P, Zhao G H. J Microbiol Biotechnol, 2014, 24: 788
-
[10]
[10] Winotapun W, Opanasopit P, Ngawhirunpat T, Rojanarata T. Enzyme Microb Technol, 2013, 53: 92
-
[11]
[11] Fu Y S, Zhang P, Chen C. J Beijing Univ Chem Technol (Natur Sci) (付岩帅, 张鹏, 陈畅. 北京化工大学学报(自然科学版)), 2011, 38: 81
-
[12]
[12] Yang Y S, Zhang T, Yu S C, Ding Y, Zhang L Y, Qiu C, Jin D. Molecules, 2011, 16: 4295
-
[13]
[13] Lee S W, Lim J M, Bhoo S H, Paik Y S, Hahn T R. Anal Chim Acta, 2003, 480: 267
-
[14]
[14] Liu L, Dong Y S, Qi S S, Wang H, Xiu Z L. Appl Microbiol Biotechnol, 2010, 85: 933
-
[15]
[15] Xu M M, Sun Q, Su J, Wang J F, Xu C, Zhang T, Sun Q L. Enzyme Microb Technol, 2008, 42: 440
-
[16]
[16] Wang H, Liu L, Guo Y X, Dong Y S, Zhang D J, Xiu Z L. Appl Microbiol Biotechnol, 2007, 75: 763
-
[17]
[17] Dong Y S, Teng H, Qi S S, Liu L, Wang H, Zhao Y K, Xiu Z L. Biochem Eng J, 2010, 52: 123
-
[18]
[18] Qi S S, Dong Y S, Zhao Y K, Xiu Z L. Chromatographia, 2009, 69: 865
-
[19]
[19] Zhang C Z, Yu H S, Bao Y M, An L J, Jin F X. Chem Pharm Bull, 2001, 49: 795
-
[20]
[20] Jia G J, Lu X Y. J Chromatogr A, 2008, 1193: 136
-
[21]
[21] Seyis I, Aksoz N. Int Biodeterior Biodegrad, 2005, 55: 115
-
[22]
[22] Yang L, Akao T, Kobashi K. Biol Pharm Bull, 1995, 18: 1175
-
[23]
[23] Yun S I, Jeong C S, Chung D K, Choi H S. Biosci biotechnol biochem, 2001, 65: 2028
-
[1]
-
-
-
[1]
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
-
[2]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[3]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[4]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[5]
Jiaqi Chen , Chunhui Luan , Yue Sun , Qiyun Ma , Wangfei Hao , Yanjia Wang , Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020
-
[6]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[7]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[8]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[9]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[10]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[11]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[12]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[13]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[14]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[15]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[16]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[17]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[18]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[19]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[20]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1020)
- HTML views(100)