Citation: Ljubisa R. Radovic, Camila Mora-Vilches, Adolfo J. A. Salgado-Casanova. Catalysis:An old but new challenge for graphene-based materials[J]. Chinese Journal of Catalysis, ;2014, 35(6): 792-797. doi: 10.1016/S1872-2067(14)60130-3 shu

Catalysis:An old but new challenge for graphene-based materials

  • Corresponding author: Ljubisa R. Radovic, 
  • Received Date: 5 May 2014
    Available Online: 7 May 2014

  • An assessment is offered regarding the progress made, and the remaining challenges, in the field of carbocatalysis. The fundamental principles that govern the preparation and performance of sp2-hybridized carbon materials in heterogeneous catalysis have been known for decades, and the level of understanding of key issues-especially the importance of textural and ion-exchange properties (i.e., surface area, pore size distribution, and proton transfer)-remains quite satisfactory. The opportunities for novel catalytic materials-especially graphene nanosheets and carbon nanotubes-are tremendous, especially when it comes to taking advantage of their structural order, such that electron transfer can be both better understood and controlled to enhance catalytic activity and selectivity.
  • 加载中
    1. [1]

      [1] Radovic L R, Rodríguez-Reinoso F. Chem Phys Carbon, 1997, 25: 243

    2. [2]

      [2] Radovic L R, Sudhakar C. In: Marsh H, Heintz E A, Rodríguez-Reinoso F eds. Introduction to Carbon Technologies. Alicante, Spain: University of Alicante Press, 1997

    3. [3]

      [3] Su D S, Perathoner S, Centi G. Catal Today, 2012, 186: 1

    4. [4]

      [4] Haag D R, Kung H H. Top Catal, 2014, 57: 762

    5. [5]

      [5] Rodríguez-Reinoso F. Carbon, 1998, 36: 159

    6. [6]

      [6] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    7. [7]

      [7] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233

    8. [8]

      [8] Machado B F, Serp P. Catal Sci Technol, 2012, 2: 54

    9. [9]

      [9] Antolini E. Appl Catal B, 2012, 123-124: 52

    10. [10]

      [10] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378

    11. [11]

      [11] Serp P, Figueiredo J L (Ed). Carbon Materials for Catalysis. Hoboken: Wiley, 2009

    12. [12]

      [12] He D P, Kou Z K, Xiong Y L, Cheng K, Chen X, Pan M, Mu S C. Carbon, 2014, 66: 312

    13. [13]

      [13] Peng F, Zhang L, Wang H J, Lü P, Yu H. Carbon, 2005, 43: 2405

    14. [14]

      [14] Watkins J D, Lawrence R, Taylor J E, Bull S D, Nelson G W, Foord J S, Wolverson D, Rassaei L, Evans N D M, Gascon S A, Marken F. Phys Chem Chem Phys, 2010, 12: 4872

    15. [15]

      [15] Barroso-Bujans F, Verdejo R, Arroyo M, Lopez-Gonzalez M D, Riande E, Lopez-Manchado M A. Macromol Rapid Commun, 2008, 29: 234

    16. [16]

      [16] Barroso-Bujans F, Fierro J L G, Rojas S, Sanchez-Cortes S, Arroyo M, Lopez-Manchado M A. Carbon, 2007, 45: 1669

    17. [17]

      [17] Mo X H, Lopez D E, Suwannakarn K, Liu Y J, Lotero E, Goodwin J G Jr, Lu C Q. J Catal, 2008, 254: 332

    18. [18]

      [18] Leon y Leon C A, Radovic L R. Chem Phys Carbon, 1994, 24: 213

    19. [19]

      [19] Boehm H P. Carbon, 1994, 32: 759

    20. [20]

      [20] Prado-Burguete C, Linares-Solano A, Rodriguez-Reinoso F, Salinas-Martinez de Lecea C. J Catal, 1989, 115: 98

    21. [21]

      [21] van Steen E, Prinsloo F F. Catal Today, 2002, 71: 327

    22. [22]

      [22] Rodriguez-Reinoso F, Linares-Solano A. Chem Phys Carbon, 1989, 21: 1

    23. [23]

      [23] Wang C N, Li H, Zhao J H, Zhu Y, Yuan W Z, Zhang Y M. Int J Hydrog Energy, 2013, 38: 13230

    24. [24]

      [24] Lee S H, Kakati N, Jee S H, Maiti J, Yoon Y S. Mater Lett, 2011, 65: 3281

    25. [25]

      [25] Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y. Electrochim Acta, 2003, 48: 3861

    26. [26]

      [26] Choi S M, Seo M H, Kim H J, Kim W B. Carbon, 2011, 49: 904

    27. [27]

      [27] Kamat P V. J Phys Chem Lett, 2010, 1: 520

    28. [28]

      [28] Williams G, Kamat P V. Langmuir, 2009, 25: 13869

    29. [29]

      [29] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487

    30. [30]

      [30] Long F J, Sykes K W. J Chim Phys, 1950, 47: 361

    31. [31]

      [31] Radovic L R, Karra M, Skokova K, Thrower P A. Carbon, 1998, 36: 1841

    32. [32]

      [32] Janiak C, Hoffmann R, Sjövall P, Kasemo B. Langmuir, 1993, 9: 3427

    33. [33]

      [33] Pan D Y, Zhang J C, Li Z, Wu M H. Adv Mater, 2010, 22: 734

    34. [34]

      [34] Pan D Y, Zhang J C, Li Z, Wu C, Yan X M, Wu M H. Chem Commun, 2010, 46: 3681

    35. [35]

      [35] Radovic L R. In: Eder D, Schlögl R eds. Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications. Berlin: Walter De Gruyter, 2014

    36. [36]

      [36] Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R, Chand S. J Am Chem Soc, 2011, 133: 9960

    37. [37]

      [37] Shen J H, Zhu Y H, Chen C, Yang X L, Li C Z. Chem Commun, 2011, 47: 2580

    38. [38]

      [38] Moldovan M S, Bulou H, Dappe Y J, Janowska I, Begin D, Pham-Huu C, Ersen O. J Phys Chem C, 2012, 116: 9274

    39. [39]

      [39] Baker R T K. J Adhesion, 1995, 52: 13

    40. [40]

      [40] Hennig G R. Chem Phys Carbon, 1966, 2: 1

    41. [41]

      [41] Thomas J M. Chem Phys Carbon, 1965, 1: 121

    42. [42]

      [42] Boukhvalov D W, Dreyer D R, Bielawski C W, Son Y W. ChemCatChem, 2012, 4: 1844

    43. [43]

      [43] Salgado A, Radovic L R. In: Proceedings of Carbon 2014 (International Carbon Conference). Jeju, Korea, 2014

    44. [44]

      [44] Mora-Vilches C, Buljan A, Radovic L R. In: Proceedings of Carbon 2013 (International Carbon Conference). Rio de Janeiro, Brazil, 2013

    45. [45]

      [45] Delmon B, Froment G F. Catal Rev-Sci Eng, 1996, 38: 69

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    10. [10]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    14. [14]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    15. [15]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    16. [16]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    17. [17]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    18. [18]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

Metrics
  • PDF Downloads(176)
  • Abstract views(577)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return