Citation:
Ljubisa R. Radovic, Camila Mora-Vilches, Adolfo J. A. Salgado-Casanova. Catalysis:An old but new challenge for graphene-based materials[J]. Chinese Journal of Catalysis,
;2014, 35(6): 792-797.
doi:
10.1016/S1872-2067(14)60130-3
-
An assessment is offered regarding the progress made, and the remaining challenges, in the field of carbocatalysis. The fundamental principles that govern the preparation and performance of sp2-hybridized carbon materials in heterogeneous catalysis have been known for decades, and the level of understanding of key issues-especially the importance of textural and ion-exchange properties (i.e., surface area, pore size distribution, and proton transfer)-remains quite satisfactory. The opportunities for novel catalytic materials-especially graphene nanosheets and carbon nanotubes-are tremendous, especially when it comes to taking advantage of their structural order, such that electron transfer can be both better understood and controlled to enhance catalytic activity and selectivity.
-
Keywords:
- Graphene-based material,
- Challenge,
- Carbon nanotube,
- Nanosheet
-
-
-
[1]
[1] Radovic L R, Rodríguez-Reinoso F. Chem Phys Carbon, 1997, 25: 243
-
[2]
[2] Radovic L R, Sudhakar C. In: Marsh H, Heintz E A, Rodríguez-Reinoso F eds. Introduction to Carbon Technologies. Alicante, Spain: University of Alicante Press, 1997
-
[3]
[3] Su D S, Perathoner S, Centi G. Catal Today, 2012, 186: 1
-
[4]
[4] Haag D R, Kung H H. Top Catal, 2014, 57: 762
-
[5]
[5] Rodríguez-Reinoso F. Carbon, 1998, 36: 159
-
[6]
[6] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782
-
[7]
[7] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233
-
[8]
[8] Machado B F, Serp P. Catal Sci Technol, 2012, 2: 54
-
[9]
[9] Antolini E. Appl Catal B, 2012, 123-124: 52
-
[10]
[10] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378
-
[11]
[11] Serp P, Figueiredo J L (Ed). Carbon Materials for Catalysis. Hoboken: Wiley, 2009
-
[12]
[12] He D P, Kou Z K, Xiong Y L, Cheng K, Chen X, Pan M, Mu S C. Carbon, 2014, 66: 312
-
[13]
[13] Peng F, Zhang L, Wang H J, Lü P, Yu H. Carbon, 2005, 43: 2405
-
[14]
[14] Watkins J D, Lawrence R, Taylor J E, Bull S D, Nelson G W, Foord J S, Wolverson D, Rassaei L, Evans N D M, Gascon S A, Marken F. Phys Chem Chem Phys, 2010, 12: 4872
-
[15]
[15] Barroso-Bujans F, Verdejo R, Arroyo M, Lopez-Gonzalez M D, Riande E, Lopez-Manchado M A. Macromol Rapid Commun, 2008, 29: 234
-
[16]
[16] Barroso-Bujans F, Fierro J L G, Rojas S, Sanchez-Cortes S, Arroyo M, Lopez-Manchado M A. Carbon, 2007, 45: 1669
-
[17]
[17] Mo X H, Lopez D E, Suwannakarn K, Liu Y J, Lotero E, Goodwin J G Jr, Lu C Q. J Catal, 2008, 254: 332
-
[18]
[18] Leon y Leon C A, Radovic L R. Chem Phys Carbon, 1994, 24: 213
-
[19]
[19] Boehm H P. Carbon, 1994, 32: 759
-
[20]
[20] Prado-Burguete C, Linares-Solano A, Rodriguez-Reinoso F, Salinas-Martinez de Lecea C. J Catal, 1989, 115: 98
-
[21]
[21] van Steen E, Prinsloo F F. Catal Today, 2002, 71: 327
-
[22]
[22] Rodriguez-Reinoso F, Linares-Solano A. Chem Phys Carbon, 1989, 21: 1
-
[23]
[23] Wang C N, Li H, Zhao J H, Zhu Y, Yuan W Z, Zhang Y M. Int J Hydrog Energy, 2013, 38: 13230
-
[24]
[24] Lee S H, Kakati N, Jee S H, Maiti J, Yoon Y S. Mater Lett, 2011, 65: 3281
-
[25]
[25] Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y. Electrochim Acta, 2003, 48: 3861
-
[26]
[26] Choi S M, Seo M H, Kim H J, Kim W B. Carbon, 2011, 49: 904
-
[27]
[27] Kamat P V. J Phys Chem Lett, 2010, 1: 520
-
[28]
[28] Williams G, Kamat P V. Langmuir, 2009, 25: 13869
-
[29]
[29] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487
-
[30]
[30] Long F J, Sykes K W. J Chim Phys, 1950, 47: 361
-
[31]
[31] Radovic L R, Karra M, Skokova K, Thrower P A. Carbon, 1998, 36: 1841
-
[32]
[32] Janiak C, Hoffmann R, Sjövall P, Kasemo B. Langmuir, 1993, 9: 3427
-
[33]
[33] Pan D Y, Zhang J C, Li Z, Wu M H. Adv Mater, 2010, 22: 734
-
[34]
[34] Pan D Y, Zhang J C, Li Z, Wu C, Yan X M, Wu M H. Chem Commun, 2010, 46: 3681
-
[35]
[35] Radovic L R. In: Eder D, Schlögl R eds. Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications. Berlin: Walter De Gruyter, 2014
-
[36]
[36] Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R, Chand S. J Am Chem Soc, 2011, 133: 9960
-
[37]
[37] Shen J H, Zhu Y H, Chen C, Yang X L, Li C Z. Chem Commun, 2011, 47: 2580
-
[38]
[38] Moldovan M S, Bulou H, Dappe Y J, Janowska I, Begin D, Pham-Huu C, Ersen O. J Phys Chem C, 2012, 116: 9274
-
[39]
[39] Baker R T K. J Adhesion, 1995, 52: 13
-
[40]
[40] Hennig G R. Chem Phys Carbon, 1966, 2: 1
-
[41]
[41] Thomas J M. Chem Phys Carbon, 1965, 1: 121
-
[42]
[42] Boukhvalov D W, Dreyer D R, Bielawski C W, Son Y W. ChemCatChem, 2012, 4: 1844
-
[43]
[43] Salgado A, Radovic L R. In: Proceedings of Carbon 2014 (International Carbon Conference). Jeju, Korea, 2014
-
[44]
[44] Mora-Vilches C, Buljan A, Radovic L R. In: Proceedings of Carbon 2013 (International Carbon Conference). Rio de Janeiro, Brazil, 2013
-
[45]
[45] Delmon B, Froment G F. Catal Rev-Sci Eng, 1996, 38: 69
-
[1]
-
-
-
[1]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[2]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[3]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[4]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[5]
Yuhao Ma , Yufei Zhou , Mingchuan Yu , Cheng Fang , Shaoxia Yang , Junfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453
-
[6]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[7]
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
-
[8]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[9]
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
-
[10]
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
-
[11]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[12]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[13]
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
-
[14]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[15]
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
-
[16]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[17]
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
-
[18]
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
-
[19]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[20]
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
-
[1]
Metrics
- PDF Downloads(176)
- Abstract views(577)
- HTML views(42)