Citation: Majdi Kacem, Gael Plantard, Nathalie Wery, Vincent Goetz. Kinetics and efficiency displayed by supported and suspended TiO2 catalysts applied to the disinfection of Escherichia coli[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1571-1577. doi: 10.1016/S1872-2067(14)60125-X shu

Kinetics and efficiency displayed by supported and suspended TiO2 catalysts applied to the disinfection of Escherichia coli

  • Corresponding author: Majdi Kacem, 
  • Received Date: 23 February 2014
    Available Online: 21 April 2014

    Fund Project:

  • TiO2-mediated photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including photoelectrochemical conversion, self-cleaning surfaces, and especially water purification systems. The dimensionality of the structure of a TiO2 material can affect its properties, functions, and more specifically, its photocatalytic performance. In this work, the photocatalytic inactivation of Gram-negative Escherichia coli using three photocatalysts, differing in their structure and other characteristics, was studied in a batch reactor under UVA light. The aim was to establish the disinfection efficiency of solid TiO2 compared with that of suspended catalysts, widely considered as reference cases for photocatalytic water disinfection. The bacterial inactivation profiles obtained showed that: (1) the photoinactivation was exclusively related to the quantity of photons retained per unit of treated volume, irrespective of the characteristics of the photocatalyst and the emitted light flux densities; (2) across the whole UV light range studied, each of the photocatalytic solids was able to achieve more than 2 log bacterial inactivation with less than 2 h UV irradiation; (3) none of the used catalysts achieved a total bacterial disinfection during the treatment time. For each of the catalysts the quantum yield has been assessed in terms of disinfection efficiency, the 2D material showed almost the same performance as those of suspended catalysts. This catalyst is promising for supported photocatalysis applications.
  • 加载中
    1. [1]

      [1] Gaya U I, Abdullah A H. J Photochem Photobiol C, 2008, 9: 1

    2. [2]

      [2] Yang H W, Cheng H F. Sep Purif Technol, 2007, 56: 392

    3. [3]

      [3] Lu J F, Zhang T, Ma J, Chen Z L. J Hazard Mater, 2009, 162: 140

    4. [4]

      [4] Coleman H M, Marquis C P, Scott J A, Chin S S, Amal R. Chem Eng J, 2005, 113: 55

    5. [5]

      [5] Munoz I, Rieradevall J, Torrades F, Peral J, Domenech X. Sol Energy, 2005, 79: 369

    6. [6]

      [6] Malato S, Blanco J, Campos A, Caceres J, Guillard C, Herrmann J M, Fernandez-Alba A R. Appl Catal B, 2003, 42: 349

    7. [7]

      [7] Malato S, Blanco J, Fernandez-Alba A R, Agüera A. Chemosphere, 2000, 40: 403

    8. [8]

      [8] Janin T. Doctoral Thesis. University of Perpignan Via Domitia, France, 2011

    9. [9]

      [9] Blanco-Gálvez J, Fernández-Ibáñez P, Malato-Rodríguez S. J Sol Energ Eng, 2007, 129: 4

    10. [10]

      [10] Gumy D, Morais C, Bowen P, Pulgarín C, Giraldo S, Hajdu R, Kiwi J. Appl Catal B, 2006, 63: 76

    11. [11]

      [11] Malato S, Fernandez-Ibanez P, Maldonado M I, Blanco J, Gernjak W. Catal Today, 2009, 147: 1

    12. [12]

      [12] Minero C, Vione D. Appl Catal B, 2006, 67: 257

    13. [13]

      [13] Cassano A E, Alfano O M. Catal Today, 2000, 58: 167

    14. [14]

      [14] Plantard G, Janin T, Goetz V, Brosillon S. Appl Catal B, 2012, 115- 116: 38

    15. [15]

      [15] Chong M N, Jin B, Zhu H Y, Chow C W K, Saint C. Chem Eng J, 2009, 150: 49

    16. [16]

      [16] Ochuma I J, Fishwick R P, Wood J, Winterbottom J M. Appl Catal B, 2007, 73: 259

    17. [17]

      [17] Chin S S, Chiang K, Fane A G. J Membr Sci, 2006, 275: 202

    18. [18]

      [18] Correia F, Goetz V, Plantard G, Sacco D. J Sol Energy Eng, 2011, 133: 031002

    19. [19]

      [19] Chick H. J Hygiene, 1908, 8: 92

    20. [20]

      [20] Herrmann J M. Catal Today, 1999, 53: 115

    21. [21]

      [21] Berney M, Weilenmann H U, Ihssen J, Bassin C, Egli T. Appl Environ Microbiol, 2006, 72: 2586

    22. [22]

      [22] Dalrymple O K, Stefanakos E, Trotz M A, Goswami D Y. Appl Catal B, 2010, 98: 27

    23. [23]

      [23] Benabbou A K, Derriche Z, Felix C, Lejeune P, Guillard C. Appl Catal B, 2007, 76: 257

    24. [24]

      [24] Cho M, Chung H, Choi W, Yoon J. Water Res, 2004, 38: 1069

    25. [25]

      [25] Lydakis-Simantiris N, Riga D, Katsivela E, Mantzavinos D, Xekoukoulotakis N P. Desalination, 2010, 250: 351

    26. [26]

      [26] Goslich R, Bahnemann D, Shumacher H W, Benz V, Mfiller M. In: Becker M, Böhmer M (Eds). Proceedings of the 8th International Symposium on Solar Thermal Concentrating Technologies. Heidelberg, Germany: C. F. Müller Verlag, 1997. 1337

    27. [27]

      [27] Davydov L, Smirniotis P G, Pratsinis S E. Ind Eng Chem Res, 1999, 38: 1375

    28. [28]

      [28] Peil N J, Hoffmann M R. Environ Sci Technol, 1995, 29: 2974

    29. [29]

      [29] Plantard G, Correia F, Goetz V. J Photochem Photobiol A, 2011, 222: 111

    30. [30]

      [30] Marugan J, Hufschmidt D, Lopez-Munoz M J, Selzer V, Bahnemann D. Appl Catal B, 2006, 62: 201

    31. [31]

      [31] Elatmani K, Plantard G, Sacco D, Aitichou I, Goetz V. Mater Sci Semicon Proc, 2013, 16: 1117

    32. [32]

      [32] Wang C Y, Rabani J, Bahnemann D W, Dohrmann J K. J Photochem Photobiol A, 2002, 148: 169

    33. [33]

      [33] Sun L Z, Bolton J R. J Phys Chem, 1996, 100: 4127

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    3. [3]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    4. [4]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    5. [5]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    6. [6]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    7. [7]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    8. [8]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    9. [9]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    10. [10]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    11. [11]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    12. [12]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    13. [13]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    16. [16]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    17. [17]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    18. [18]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    19. [19]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    20. [20]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

Metrics
  • PDF Downloads(0)
  • Abstract views(461)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return