Citation: Haiyan Li, Jinfeng Liu, Junjie Qian, Qiuye Li, Jianjun Yang. Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1578-1589. doi: 10.1016/S1872-2067(14)60124-8 shu

Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance

  • Corresponding author: Jianjun Yang, 
  • Received Date: 24 February 2014
    Available Online: 21 April 2014

    Fund Project:

  • Bi-doped TiO2 photocatalysts were prepared by a hydrothermal method using nanotube titanic acid as the Ti precursor. The samples were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Methyl orange (MO) was used as a model contaminant to evaluate the visible light photocatalytic activity of the Bi-doped TiO2 samples. We found that the Bi ions did not incorporate into the TiO2 lattice but instead existed in the form of BiOCl. The obtained BiOCl-composited TiO2 samples exhibited remarkable photocatalytic activity under visible light irradiation for the photodegradation of MO. The sample obtained when the Bi/Ti molar ratio was 1% and the hydrothermal treatment temperature was 130 ℃ (BTO-130-1) showed the highest photocatalytic activity. Moreover, a possible mechanism was proposed and the enhanced photocatalytic activity was discussed. The as-prepared catalyst also showed high photocatalytic activity for the photodegradation of 4- chlorophenol.
  • 加载中
    1. [1]

      [1] Yang C C, Yu Y H, van der Linden B, Wu J C S, Mul G. J Am Chem Soc, 2010, 132: 8398

    2. [2]

      [2] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem Rev, 1995, 95: 69

    3. [3]

      [3] Fujishima A, Honda K. Nature, 1972, 238: 37

    4. [4]

      [4] Fujishima A, Rao T N, Tryk D A. J Photochem Photobiol C, 2000, 1: 1

    5. [5]

      [5] Wu Q P, Zheng Q, van de Krol R. J Phys Chem C, 2012, 116: 7219

    6. [6]

      [6] Tian B Z, Li C Z, Gu F, Jiang H B, Hu Y J, Zhang J L. Chem Eng J, 2009, 151: 220

    7. [7]

      [7] Chang J S, Hwang Y K, Ariga K. J Nanosci Nanotechnol, 2010, 10: 1

    8. [8]

      [8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    9. [9]

      [9] Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138

    10. [10]

      [10] Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 4516

    11. [11]

      [11] Choi W Y, Termin A, Hoffmann M R. J Phys Chem, 1994, 98: 13669

    12. [12]

      [12] Štengl V, Bakardjieva S, Murafa N. Mater Chem Phys, 2009, 114: 217

    13. [13]

      [13] Xu A W, Gao Y, Liu H Q. J Catal, 2002, 207: 151

    14. [14]

      [14] Xu J J, Chen M D, Fu D G. Appl Surf Sci, 2011, 257: 7381

    15. [15]

      [15] Zuo H S, Sun J, Deng K J, Su R, Wei F Y, Wang D Y. Chem Eng Technol, 2007, 30: 577

    16. [16]

      [16] Murcia-López S, Hidalgo M C, Navío J A. Appl Catal A, 2011, 404: 59

    17. [17]

      [17] Hu Y, Cao Y T, Wang P X, Li D Z, Chen W, He Y H, Fu X Z, Shao Y, Zheng Y. Appl Catal B, 2012, 125: 294

    18. [18]

      [18] Li H Y, Wang D J, Wang P, Fan H M, Xie T F. Chem Eur J, 2009, 15: 12521

    19. [19]

      [19] Ji T H, Yang F, Lü Y Y, Zhou J Y, Sun J Y. Mater Lett, 2009, 63: 2044

    20. [20]

      [20] Yu J X, Liu S W, Xiu Z L, Yu W N, Feng G J. J Alloys Compd, 2008, 461: L17

    21. [21]

      [21] Hong W J, Kang M. Mater Lett, 2006, 60: 1296

    22. [22]

      [22] Kang M, Ko Y R, Jeon M K, Lee S C, Choung S J, Park J Y, Kim S, Choi S H. J Photochem Photobiol A, 2005, 173: 128

    23. [23]

      [23] Reddy P A K, Srinivas B, Kala P, Kumari V D, Subrahmanyam M. Mater Res Bull, 2011, 46: 1766

    24. [24]

      [24] Yao W F, Wang H, Xu X H, Cheng X F, Huang J, Shang S X, Yang X N, Wang M. Appl Catal A, 2003, 243: 185

    25. [25]

      [25] Sajjad S, Leghari S A K, Chen F, Zhang J L. Chem Eur J, 2010, 16: 13795

    26. [26]

      [26] Xu J J, Ao Y H, Fu D G, Yuan C W. Appl Surf Sci, 2008, 255: 2365

    27. [27]

      [27] Wang Y, Wang Y, Meng Y L, Ding H M, Shan Y K, Zhao X, Tang X Z. J Phys Chem C, 2008, 112 : 6620

    28. [28]

      [28] Zhang S L, Zhou J F, Zhang Z J, Du Z L, Vorontsov A V, Jin Z S. Chin Sci Bull (张顺利, 周静芳, 张治军, 杜祖亮, Vorontsov A V, 金振声. 科学通报), 2000, 45: 1104

    29. [29]

      [29] Yang J J, Jin Z S, Wang X D, Li W, Zhang J W, Zhang S L, Guo X Y, Zhang Z J. Dalton Trans, 2003: 3898

    30. [30]

      [30] Zhang M, Feng C X, Jin Z S, Cheng G, Du Z L, Dang H X. Chin J Catal (张敏, 冯彩霞, 金振声, 程刚, 杜祖亮, 党鸿辛. 催化学报), 2005, 26: 508

    31. [31]

      [31] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J Am Chem Soc, 2012, 134: 4473

    32. [32]

      [32] Zheng Y Q, Shi E W, Yuan R L, Li W J, Wang B G, Zhong W Z, Hu X F. Sci China (Series E)(郑燕青, 施尔畏, 元如林, 李汶军, 王步国, 仲维卓, 胡行方. 中国科学E辑), 1999, 29: 206

    33. [33]

      [33] Shi L Y, Gu H C, Li C Z, Fang D Y, Zhang Y, Hua B. Chin J Catal (施利毅, 古宏晨, 李春忠, 房鼎业, 张怡, 华彬. 催化学报), 1999, 20: 338

    34. [34]

      [34] Lü K L, Zuo H S, Sun J, Deng K J, Liu S C, Li X F, Wang D Y. J Hazard Mater, 2009, 161: 396

    35. [35]

      [35] Morgan W E, Stec W J, Van Wazer J R. Inorg Chem, 1973, 12: 953

    36. [36]

      [36] Wang J, Jing L Q, Xue L P, Qu Y C, Fu H G. J Hazard Mater, 2008, 160: 208

    37. [37]

      [37] Yu Z Y, Detlef B, Ralf D, Song L, Lu L Q. J Mol Catal A, 2012, 365: 1

    38. [38]

      [38] Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Catal Commun, 2012, 26: 204

    39. [39]

      [39] Zhang W D, Zhang Q, Dong F. Ind Eng Chem Res, 2013, 52: 6740

    40. [40]

      [40] Cui G J, Xu Z X, Wang Y, Zhang M, Yang J J. Surf Rev Lett, 2008, 15: 509

    41. [41]

      [41] Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl Catal B, 2011, 104: 268

    42. [42]

      [42] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418

    43. [43]

      [43] Leng W H, Cheng S A, Liu H, Zhang J Q, Cao C N. Acta Sci Circum (冷文华, 成少安, 刘鸿, 张鉴清, 曹楚南. 环境科学学报), 2000, 20: 499

    44. [44]

      [44] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Adv Mater, 2012, 24: 229

    45. [45]

      [45] Chen H J, Yin G J, Wu C L. Chin J Environ Eng (陈华军, 尹国杰, 吴春来. 环境工程学报), 2008, 2: 1516

    46. [46]

      [46] Jiao Y C, Zhu M F, Chen F, Zhang J L. Chin J Catal (焦艳超, 朱明峰, 陈锋, 张金龙. 催化学报), 2013, 34: 585

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(0)
  • Abstract views(561)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return