Citation:
	            
		            Haiyan  Li, Jinfeng  Liu, Junjie  Qian, Qiuye  Li, Jianjun  Yang. Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance[J]. Chinese Journal of Catalysis,
							;2014, 35(9): 1578-1589.
						
							doi:
								10.1016/S1872-2067(14)60124-8
						
					
				
					
				
	        
- 
	                	Bi-doped TiO2 photocatalysts were prepared by a hydrothermal method using nanotube titanic acid as the Ti precursor. The samples were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Methyl orange (MO) was used as a model contaminant to evaluate the visible light photocatalytic activity of the Bi-doped TiO2 samples. We found that the Bi ions did not incorporate into the TiO2 lattice but instead existed in the form of BiOCl. The obtained BiOCl-composited TiO2 samples exhibited remarkable photocatalytic activity under visible light irradiation for the photodegradation of MO. The sample obtained when the Bi/Ti molar ratio was 1% and the hydrothermal treatment temperature was 130 ℃ (BTO-130-1) showed the highest photocatalytic activity. Moreover, a possible mechanism was proposed and the enhanced photocatalytic activity was discussed. The as-prepared catalyst also showed high photocatalytic activity for the photodegradation of 4- chlorophenol.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Yang C C, Yu Y H, van der Linden B, Wu J C S, Mul G. J Am Chem Soc, 2010, 132: 8398
 - 
			
                    [2]
                
			
[2] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem Rev, 1995, 95: 69
 - 
			
                    [3]
                
			
[3] Fujishima A, Honda K. Nature, 1972, 238: 37
 - 
			
                    [4]
                
			
[4] Fujishima A, Rao T N, Tryk D A. J Photochem Photobiol C, 2000, 1: 1
 - 
			
                    [5]
                
			
[5] Wu Q P, Zheng Q, van de Krol R. J Phys Chem C, 2012, 116: 7219
 - 
			
                    [6]
                
			
[6] Tian B Z, Li C Z, Gu F, Jiang H B, Hu Y J, Zhang J L. Chem Eng J, 2009, 151: 220
 - 
			
                    [7]
                
			
[7] Chang J S, Hwang Y K, Ariga K. J Nanosci Nanotechnol, 2010, 10: 1
 - 
			
                    [8]
                
			
[8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
 - 
			
                    [9]
                
			
[9] Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138
 - 
			
                    [10]
                
			
[10] Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 4516
 - 
			
                    [11]
                
			
[11] Choi W Y, Termin A, Hoffmann M R. J Phys Chem, 1994, 98: 13669
 - 
			
                    [12]
                
			
[12] Štengl V, Bakardjieva S, Murafa N. Mater Chem Phys, 2009, 114: 217
 - 
			
                    [13]
                
			
[13] Xu A W, Gao Y, Liu H Q. J Catal, 2002, 207: 151
 - 
			
                    [14]
                
			
[14] Xu J J, Chen M D, Fu D G. Appl Surf Sci, 2011, 257: 7381
 - 
			
                    [15]
                
			
[15] Zuo H S, Sun J, Deng K J, Su R, Wei F Y, Wang D Y. Chem Eng Technol, 2007, 30: 577
 - 
			
                    [16]
                
			
[16] Murcia-López S, Hidalgo M C, Navío J A. Appl Catal A, 2011, 404: 59
 - 
			
                    [17]
                
			
[17] Hu Y, Cao Y T, Wang P X, Li D Z, Chen W, He Y H, Fu X Z, Shao Y, Zheng Y. Appl Catal B, 2012, 125: 294
 - 
			
                    [18]
                
			
[18] Li H Y, Wang D J, Wang P, Fan H M, Xie T F. Chem Eur J, 2009, 15: 12521
 - 
			
                    [19]
                
			
[19] Ji T H, Yang F, Lü Y Y, Zhou J Y, Sun J Y. Mater Lett, 2009, 63: 2044
 - 
			
                    [20]
                
			
[20] Yu J X, Liu S W, Xiu Z L, Yu W N, Feng G J. J Alloys Compd, 2008, 461: L17
 - 
			
                    [21]
                
			
[21] Hong W J, Kang M. Mater Lett, 2006, 60: 1296
 - 
			
                    [22]
                
			
[22] Kang M, Ko Y R, Jeon M K, Lee S C, Choung S J, Park J Y, Kim S, Choi S H. J Photochem Photobiol A, 2005, 173: 128
 - 
			
                    [23]
                
			
[23] Reddy P A K, Srinivas B, Kala P, Kumari V D, Subrahmanyam M. Mater Res Bull, 2011, 46: 1766
 - 
			
                    [24]
                
			
[24] Yao W F, Wang H, Xu X H, Cheng X F, Huang J, Shang S X, Yang X N, Wang M. Appl Catal A, 2003, 243: 185
 - 
			
                    [25]
                
			
[25] Sajjad S, Leghari S A K, Chen F, Zhang J L. Chem Eur J, 2010, 16: 13795
 - 
			
                    [26]
                
			
[26] Xu J J, Ao Y H, Fu D G, Yuan C W. Appl Surf Sci, 2008, 255: 2365
 - 
			
                    [27]
                
			
[27] Wang Y, Wang Y, Meng Y L, Ding H M, Shan Y K, Zhao X, Tang X Z. J Phys Chem C, 2008, 112 : 6620
 - 
			
                    [28]
                
			
[28] Zhang S L, Zhou J F, Zhang Z J, Du Z L, Vorontsov A V, Jin Z S. Chin Sci Bull (张顺利, 周静芳, 张治军, 杜祖亮, Vorontsov A V, 金振声. 科学通报), 2000, 45: 1104
 - 
			
                    [29]
                
			
[29] Yang J J, Jin Z S, Wang X D, Li W, Zhang J W, Zhang S L, Guo X Y, Zhang Z J. Dalton Trans, 2003: 3898
 - 
			
                    [30]
                
			
[30] Zhang M, Feng C X, Jin Z S, Cheng G, Du Z L, Dang H X. Chin J Catal (张敏, 冯彩霞, 金振声, 程刚, 杜祖亮, 党鸿辛. 催化学报), 2005, 26: 508
 - 
			
                    [31]
                
			
[31] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J Am Chem Soc, 2012, 134: 4473
 - 
			
                    [32]
                
			
[32] Zheng Y Q, Shi E W, Yuan R L, Li W J, Wang B G, Zhong W Z, Hu X F. Sci China (Series E)(郑燕青, 施尔畏, 元如林, 李汶军, 王步国, 仲维卓, 胡行方. 中国科学E辑), 1999, 29: 206
 - 
			
                    [33]
                
			
[33] Shi L Y, Gu H C, Li C Z, Fang D Y, Zhang Y, Hua B. Chin J Catal (施利毅, 古宏晨, 李春忠, 房鼎业, 张怡, 华彬. 催化学报), 1999, 20: 338
 - 
			
                    [34]
                
			
[34] Lü K L, Zuo H S, Sun J, Deng K J, Liu S C, Li X F, Wang D Y. J Hazard Mater, 2009, 161: 396
 - 
			
                    [35]
                
			
[35] Morgan W E, Stec W J, Van Wazer J R. Inorg Chem, 1973, 12: 953
 - 
			
                    [36]
                
			
[36] Wang J, Jing L Q, Xue L P, Qu Y C, Fu H G. J Hazard Mater, 2008, 160: 208
 - 
			
                    [37]
                
			
[37] Yu Z Y, Detlef B, Ralf D, Song L, Lu L Q. J Mol Catal A, 2012, 365: 1
 - 
			
                    [38]
                
			
[38] Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Catal Commun, 2012, 26: 204
 - 
			
                    [39]
                
			
[39] Zhang W D, Zhang Q, Dong F. Ind Eng Chem Res, 2013, 52: 6740
 - 
			
                    [40]
                
			
[40] Cui G J, Xu Z X, Wang Y, Zhang M, Yang J J. Surf Rev Lett, 2008, 15: 509
 - 
			
                    [41]
                
			
[41] Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl Catal B, 2011, 104: 268
 - 
			
                    [42]
                
			
[42] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418
 - 
			
                    [43]
                
			
[43] Leng W H, Cheng S A, Liu H, Zhang J Q, Cao C N. Acta Sci Circum (冷文华, 成少安, 刘鸿, 张鉴清, 曹楚南. 环境科学学报), 2000, 20: 499
 - 
			
                    [44]
                
			
[44] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Adv Mater, 2012, 24: 229
 - 
			
                    [45]
                
			
[45] Chen H J, Yin G J, Wu C L. Chin J Environ Eng (陈华军, 尹国杰, 吴春来. 环境工程学报), 2008, 2: 1516
 - 
			
                    [46]
                
			
[46] Jiao Y C, Zhu M F, Chen F, Zhang J L. Chin J Catal (焦艳超, 朱明峰, 陈锋, 张金龙. 催化学报), 2013, 34: 585
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
 - 
				[2]
				
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
 - 
				[3]
				
Chunchun Wang , Changjun You , Ke Rong , Chuqi Shen , Fang Yang , Shijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045
 - 
				[4]
				
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
 - 
				[5]
				
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
 - 
				[6]
				
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
 - 
				[7]
				
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
 - 
				[8]
				
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
 - 
				[9]
				
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
 - 
				[10]
				
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
 - 
				[11]
				
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
 - 
				[12]
				
Shuting Zhuang , Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010
 - 
				[13]
				
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
 - 
				[14]
				
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
 - 
				[15]
				
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
 - 
				[16]
				
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
 - 
				[17]
				
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
 - 
				[18]
				
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
 - 
				[19]
				
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
 - 
				[20]
				
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(813)
 - HTML views(21)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: