Citation:
	            
		            Anas  Benyounes, Mohamed  Kacimi, Mahfoud  Ziyad, Philippe  Serp. Conversion of isopropyl alcohol over Ru and Pd loaded N-doped carbon nanotubes[J]. Chinese Journal of Catalysis,
							;2014, 35(6): 970-978.
						
							doi:
								10.1016/S1872-2067(14)60121-2
						
					
				
					
				
	        
- 
	                	Ru and Pd (2 wt%) loaded on pure and on N-doped carbon nanotubes (N-CNTs) were prepared and tested using the isopropyl alcohol decomposition reaction as probe reaction. The presence of nitrogen functionalities (pyridinic, pyrrolic, and quaternary nitrogen) on the nitrogen doped support induced a higher metal dispersion: Pd/N-CNT (1.8 nm) < Pd/CNT (4.9 nm), and Ru/N-CNT (2.4 nm) < Ru/CNT (3.0 nm). The catalytic activity of the supports was determined first. Isopropyl alcohol conversion produces acetone on CNTs while on N-CNTs it led to both dehydration and dehydrogenation products. At 210℃ and in the presence of air, the isopropyl alcohol conversion was higher on the N-CNTs (25%) than on the CNTs (11%). The Pd loaded catalysts were more active and more selective than the Ru ones. At 115℃, the Pd catalysts were 100% selective towards acetone for a conversion of 100%, whereas the Ru catalysts led to dehydration and dehydrogenation products. The nitrogen doping induced the appearance of redox properties when oxygen is present in the reaction mixture.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Lauron-Pernot H. Catal Rev-Sci Eng, 2006, 48: 315
 - 
			
                    [2]
                
			
[2] Turek W, Krowiak A. Appl Catal A, 2012, 417-418: 102
 - 
			
                    [3]
                
			
[3] Gervasini A, Auroux A. J Catal, 1991, 131: 190
 - 
			
                    [4]
                
			
[4] Rioux R M, Vannice M A. J Catal, 2005, 233: 147
 - 
			
                    [5]
                
			
[5] Moreno-Castilla C, Maldonado-Hódar F J, Rivera-Utrilla J, Rodríguez-Castellón E. Appl Catal A, 1999, 183: 345
 - 
			
                    [6]
                
			
[6] Moreno-Castilla C, Carrasco-Marín F, Parejo-Pérez C, López Ramó M V. Carbon, 2001, 39: 869
 - 
			
                    [7]
                
			
[7] Bedia J, Rosas J M, Márquez J, Rodríguez-Mirasol J, Cordero T. Carbon, 2009, 47: 286
 - 
			
                    [8]
                
			
[8] Carrasco-Marín F, Mueden A, Moreno-Castilla C. J Phys Chem B, 1998, 102: 9239
 - 
			
                    [9]
                
			
[9] Al-Daous M A, Manda A A, Hattori H. J Mol Catal A, 2012, 363-364: 512
 - 
			
                    [10]
                
			
[10] Ogo S, Onda A, Yanagisawa K. Appl Catal A, 2008, 348: 129
 - 
			
                    [11]
                
			
[11] Campelo J M, Garcia A, Herencia J F, Luna D, Marinas J M, Romero A A. J Catal, 1995, 151: 307
 - 
			
                    [12]
                
			
[12] Gervasini A, Fenyvesi J, Auroux A. Catal Lett, 1997, 43: 219
 - 
			
                    [13]
                
			
[13] Yasu-eda T, Kitamura S, Ikenaga N, Miyake T, Suzuki T. J Mol Catal A, 2010, 323: 7
 - 
			
                    [14]
                
			
[14] Mears D E, Boudart M. AIChE J, 1966, 12: 313
 - 
			
                    [15]
                
			
[15] Rioux R M, Vannice M A. J Catal, 2003, 216: 362
 - 
			
                    [16]
                
			
[16] Pepe F, Angeletti C, De Rossi S, Jacono M L. J Catal, 1985, 91: 69
 - 
			
                    [17]
                
			
[17] Alvarez-Merino M A, Carrasco-Marín F, Fierro J L G, Moreno-Castilla C. J Catal, 2000, 192: 363
 - 
			
                    [18]
                
			
[18] Moreno-Castilla C, Pérez-Cadenas A F, Maldonado-Hódar F J, Carrasco-Marín F, Fierro J L G. Carbon, 2003, 41: 1157
 - 
			
                    [19]
                
			
[19] Zawadzki J, Wiśniewski M, Weber J, Heintz O, Azambre B. Carbon, 2001, 39: 187
 - 
			
                    [20]
                
			
[20] Han Y, Shen J, Chen Y. Appl Catal A, 2001, 205: 79
 - 
			
                    [21]
                
			
[21] Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781
 - 
			
                    [22]
                
			
[22] Liu G, Li X, Lee J-W, Popov, B N. Catal Sci Technol, 2011, 1: 207
 - 
			
                    [23]
                
			
[23] Boehm, H P, Catalytic Properties of Nitrogen-Containing Carbons. In: Serp P, Figueiredo J L eds. Carbon Materials for Catalysis. New York: John Wiley & Sons, 2008. 219
 - 
			
                    [24]
                
			
[24] Koós A A, Dowling M D, Jurkschat K, Crossley A, Grobert N. Carbon, 2009, 47:30
 - 
			
                    [25]
                
			
[25] Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chizari K, Janowska I, Pham-Huu C. J Am Chem Soc, 2012, 134: 9672
 - 
			
                    [26]
                
			
[26] O'Byrne J P, Li Z, Jones S L T, Fleming P G, Larsson J A, Morris M A, Holmes J D. ChemPhysChem, 2011, 12: 2995
 - 
			
                    [27]
                
			
[27] Yadav R M, Dobal P S, Shripathi T, Katiyar R S, Srivastava O N. Nanoscale Res Lett, 2009, 4: 197
 - 
			
                    [28]
                
			
[28] He M, Zhou S, Zhang J, Liu Z, Robinson C. J Phys Chem B, 2005, 109: 9275
 - 
			
                    [29]
                
			
[29] Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R, Sham T-K, Sun X, Ye S, Knights S. Appl Surf Sci, 2011, 257: 9193
 - 
			
                    [30]
                
			
[30] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys Rep, 2005, 409: 47
 - 
			
                    [31]
                
			
[31] Bulusheva L G, Okotrub A V, Kinloch I A, Asanov I P, Kurenya A G, Kudashov A G, Chen X, Song H. Phys Status Solidi B, 2008, 245: 1971
 - 
			
                    [32]
                
			
[32] Sharifi T, Nitze F, Barzegar H R, Tai C-W, Mazurkiewicz M, Malolepszy A, Stobinski L, Wågberg T. Carbon, 2012, 50: 3535
 - 
			
                    [33]
                
			
[33] Mabena L F, Sinha Ray S, Mhlanga S D, Coville N J. Appl Nanosci, 2011, 1: 67
 - 
			
                    [34]
                
			
[34] Vinayan B P, Ramaprabhu S. Nanoscale, 2013, 5: 5109
 - 
			
                    [35]
                
			
[35] Chen Y, Wang J, Liu H, Banis M N, Li R, Sun X, Sham T K, Ye S, Knights S. J Phys Chem C, 2011, 115: 3769
 - 
			
                    [36]
                
			
[36] Abate S, Freni M, Arrigo R, Schuster M E, Perathoner S, Centi G. ChemCatChem, 2013, 5: 1899
 - 
			
                    [37]
                
			
[37] Nakada K, Ishii A. Solid State Commun, 2011, 151: 13
 - 
			
                    [38]
                
			
[38] Trang Nguyen T, Serp P. ChemCatChem, 2013, 5: 3595
 - 
			
                    [39]
                
			
[39] Bedia J, Rosas J M, Vera D, Rodriguez-Mirasol J, Cordero T. Catal Today, 2010, 158: 89
 - 
			
                    [40]
                
			
[40] Jasinska E, Krzyzynska B, Kozlowski M. Catal Lett, 2008, 125: 145
 - 
			
                    [41]
                
			
[41] Ferens A R, Weinstein R D, Giuliano R, Hull J A. Carbon, 2012, 50: 192
 - 
			
                    [42]
                
			
[42] Fuente E, Menéndez J A, Suárez D, Montes-Morán M A. Langmuir, 2003, 19: 3505
 - 
			
                    [43]
                
			
[43] Montes-Morán M A, Suárez D, Menéndez J A, Fuente E. Carbon, 2004, 42: 1219
 - 
			
                    [44]
                
			
[44] Shafeeyan M S, Daud W M A W, Houshmand A, Shamiri A. J Anal Appl Pyrolysis, 2010, 89: 143
 - 
			
                    [45]
                
			
[45] Strelko Jr V, J Malik D, Streat M. Carbon, 2002, 40:95
 - 
			
                    [46]
                
			
[46] Wiame H, Cellier C, Grange P. J Catal, 2000, 190: 406
 - 
			
                    [47]
                
			
[47] Busca G, Lorenzelli V, Porcile G, Baraton M I, Quintard P, Marchand R. Mater Chem Phys, 1986, 14: 123
 - 
			
                    [48]
                
			
[48] Lednor P W, De Ruiter R. J Chem Soc, Chem Commun,1991: 1625
 - 
			
                    [49]
                
			
[49] Massinon A, Odriozola J A, Bastians P, Conanec R, Marchand R, Laurent Y, Grange P. Appl Catal A, 2013, 137: 9
 - 
			
                    [50]
                
			
[50] Grange P, Bastians P, Conanec R, Marchand R, Laurent Y. Appl Catal A,1994, 114: L191
 - 
			
                    [51]
                
			
[51] Shimoyama I, Wu G, SekiguchiT, BabaY. J Electron Spectrosc, 2001, 114-116: 841
 - 
			
                    [52]
                
			
[52] Balon M, Carmona M C, Munoz M A, Hidalgo J. Tetrahedron, 1989, 45: 7501
 - 
			
                    [53]
                
			
[53] Kundu S, Xia W, Busser W, Becker M, Schmidt D A, Havenith M, Muhler M. Phys Chem Chem Phys, 2010, 12: 4351
 - 
			
                    [54]
                
			
[54] Povarova E I, Pylinina A I, Mikhalenko I I. Russ J Phys Chem A, 2012, 86: 935
 - 
			
                    [55]
                
			
[55] Kulkarni D, Wachs I E. Appl Catal A, 2002, 237: 121
 - 
			
                    [56]
                
			
[56] Oishi T, Yamaguchi K, MizunoN. Top Catal, 2010, 53: 479
 - 
			
                    [57]
                
			
[57] Machado B F, Oubenali M, Axet M R, Trang Nguyen T T, Tunckol M, Girleanu M, Ersen O, Gerber I C, Serp P. J Catal, 2014, 309: 185
 - 
			
                    [58]
                
			
[58] Pérez-Cadenas A F, Moreno-Castilla C, Maldonado-HódarF J, Fierro J L G. J Catal, 2003, 217: 30
 - 
			
                    [59]
                
			
[59] Rouimi M, Ziyad M, Leglise J. Phosphorus ResBull, 1999, 10: 418
 - 
			
                    [60]
                
			
[60] Meira D M, Cortez G G, Monteiro W R, Rodrigues J A J. Brazi J Chem Eng, 2006, 23: 351
 - 
			
                    [61]
                
			
[61] New Solid Acids and Bases Their Catalytic Properties. Edited by Tanabe K, Misono M, Ono Y, Hattori H. Stud Surf Sci Catal, 1989, 51: 1
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
 - 
				[2]
				
Junlong Tang , Yuhan Zhao , Yangbin Jin , Liren Zhang , Yuanfang Wang , Wanqing Wu , Huanfeng Jiang . Palladium-catalyzed modular biomimetic synthesis of lignans derivatives. Chinese Chemical Letters, 2025, 36(7): 110969-. doi: 10.1016/j.cclet.2025.110969
 - 
				[3]
				
Zhao Gu , Yunhui Yang , Song Ye , Congyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334
 - 
				[4]
				
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
 - 
				[5]
				
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
 - 
				[6]
				
Peng Jin , Sili Lin , Dongmei Wang , Jinsong Fan , Qingyun Liu , Kun Li . Valence-band hybridization endows the reaction specificity of AgPd nanozyme for exclusive peroxidase mimicking and improved sensing performance. Chinese Chemical Letters, 2025, 36(11): 110916-. doi: 10.1016/j.cclet.2025.110916
 - 
				[7]
				
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
 - 
				[8]
				
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
 - 
				[9]
				
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
 - 
				[10]
				
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
 - 
				[11]
				
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
 - 
				[12]
				
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
 - 
				[13]
				
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
 - 
				[14]
				
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
 - 
				[15]
				
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
 - 
				[16]
				
Ming Zhong , Xue Guo , Yang Liu , Kun Zhao , Hui Peng , Suijun Liu , Xiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873
 - 
				[17]
				
Jinhui Zhang , Jianglin Liu , Jie Ran , Xuliang Lin , Huan Wang , Xueqing Qiu . Oxidative ammonolysis modified lignin-derived nitrogen-doped carbon-supported Co/Fe composites as bifunctional electrocatalyst for Zn-air batteries. Chinese Chemical Letters, 2025, 36(10): 110403-. doi: 10.1016/j.cclet.2024.110403
 - 
				[18]
				
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
 - 
				[19]
				
Jichun Li , Zhengren Wang , Yu Deng , Hongxiu Yu , Yonghui Deng , Xiaowei Cheng , Kaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111
 - 
				[20]
				
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(677)
 - HTML views(57)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: