Citation: De Chen, Anders Holmen, Zhijun Sui, Xinggui Zhou. Carbon mediated catalysis:A review on oxidative dehydrogenation[J]. Chinese Journal of Catalysis, ;2014, 35(6): 824-841. doi: 10.1016/S1872-2067(14)60120-0 shu

Carbon mediated catalysis:A review on oxidative dehydrogenation

  • Corresponding author: De Chen, 
  • Received Date: 11 April 2014
    Available Online: 28 April 2014

  • Carbon mediated catalysis has gained an increasing attention in both areas of nanocatalysis and nanomaterials. The progress in carbon nanomaterials provides many new opportunities to manipulate the types and properties of active sites of catalysts through manipulating structures, functionalities and properties of carbon surfaces. The present review focuses on progresses in carbon mediated oxidative dehydrogenation reactions of ethylbenzene, propane, and butane. The state-of-the- art of the developments of carbon mediated catalysis is discussed in terms of fundamental studies on adsorption of oxygen and hydrocarbons, reaction mechanism as well as effects of carbon nanomaterial structures and surface functional groups on the catalytic performance. We highlight the importance and challenges in tuning of the electron density of carbon and oxygen on carbon surfaces for improving selectivity in oxidative dehydrogenation reactions.
  • 加载中
    1. [1]

      [1] Coughlin R W. Ind Eng Chem Prod Res Dev, 1969, 8: 12

    2. [2]

      [2] Stueber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A. Top Catal, 2005, 33: 3

    3. [3]

      [3] Radovic L R, Rodriguez-Reinoso F. Chem Phys Carbon, 1997, 25: 243

    4. [4]

      [4] Rodriguez-Reinoso F. In: Patrick J W Ed. Porosity in Carbons. UK: Wiley, 1995. 253

    5. [5]

      [5] Ros T G, Van Dillen A J, Geus J W, Koningsberger D C. Chem Eur J, 2002, 8: 1151

    6. [6]

      [6] Serp P, Figueiredo J L. Carbon Materials for Catalysis. Hoboken: John Wiley & Sons, Inc., 2008

    7. [7]

      [7] Serp P, Corrias M, Kalck P. Appl Catal A, 2003, 253: 337

    8. [8]

      [8] Dai H J. Surf Sci, 2002, 500: 218

    9. [9]

      [9] Terrones M. Int Mater Rev, 2004, 49: 325

    10. [10]

      [10] Mostofizadeh A, Li Y W, Song B, Huang Y D. J Nanomater, 2011: 685081

    11. [11]

      [11] Terrones M, SouzaF, Antonio G, Rao A M. Top Appl Phys, 2008, 111: 531

    12. [12]

      [12] Tessonnier J-P, Su D S. ChemSusChem, 2011, 4: 824

    13. [13]

      [13] De Jong K P, Geus J W. Catal Rev-Sci Eng, 2000, 42: 481

    14. [14]

      [14] Zhao M Q, Zhang Q, Huang J Q, Wei F. Adv Funct Mater, 2012, 22: 675

    15. [15]

      [15] Vilatela J J, Eder D. ChemSusChem, 2012, 5: 456

    16. [16]

      [16] Serp P, Castillejos E. ChemCatChem, 2010, 2: 41

    17. [17]

      [17] Zhu J, Holmen A, Chen D. ChemCatChem, 2013, 5: 378

    18. [18]

      [18] Guldi D M, Martín N. Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Weinheim: Wiley-VCH, 2010

    19. [19]

      [19] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169

    20. [20]

      [20] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    21. [21]

      [21] Sun X Y, Wang R, Su D S. Chin J Catal (孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34: 508

    22. [22]

      [22] Yu D S, Nageli E, Du F, Dai L M. J Phy Chem Lett, 2010, 1: 2165

    23. [23]

      [23] Zhou K, Li B, Zhang Q, Huang J Q, Tian G L, Jia J C, Zhao M Q, Luo G H, Su D S, Wei F. ChemSusChem, 2014, 7: 723

    24. [24]

      [24] Zhou J H, Sui Z J, Li P, Chen D, Dai Y C, Yuan W K. Carbon, 2006, 44: 3255

    25. [25]

      [25] Kvande I, Zhu J, Zhao T J, Hammer N, RØnning M, Raaen S, Walmsley J C, Chen D. J Phys Chem C, 2010, 114: 1752

    26. [26]

      [26] Kvande I, Øye G, Hammer N, RØnning M, Raaen S, Holmen A, Sjöblom J, Chen D. Carbon, 2008, 46: 759

    27. [27]

      [27] Zhu J, Zhao T J, Kvande I, Chen D, Zhou X G, Yuan W K. Chin J Catal (朱俊, 赵铁均, KVANDE I, 陈德, 周兴贵, 袁渭康. 催化学报), 2008, 29: 1145

    28. [28]

      [28] Kvande, I, Chen D, Zhao T J, Skoe I M, Walmsley J C, Ronning M. Top Catal, 2009, 52: 664

    29. [29]

      [29] Duan X Z, Zhou J H, Qian G, Li P, Zhou X G, Chen D. Chin J Catal (段学志, 周静红, 钱刚, 李平, 周兴贵, 陈德. 催化学报), 2010, 26: 979

    30. [30]

      [30] Schlögl R. In: Ertl G, Knoezinger H, Weitkamp J eds. Preparation of Solid Catalysts. Weinheim: Wiley-VCH, 1999. 138

    31. [31]

      [31] Maciá-AgullóJ A, Cazorla-Amorós D, Linares-Solano A, Wild U, Su D S, Schlögl R. Catal Today, 2005, 102-103: 248

    32. [32]

      [32] Boehm H P. Carbon, 1994, 32: 759

    33. [33]

      [33] Klein K L, Melechko A V, McKnight T E, Retterer S T, Rack P D, Fowlkes J D, Joy D C, Simpson M L. J Appl Phys, 2008, 103: 061301/1

    34. [34]

      [34] Efremenko I, Sheintuch M. J Catal, 2003, 214: 53

    35. [35]

      [35] Ulbricht H, Moos G, Hertel T. Surf Sci, 2003, 532-535: 852

    36. [36]

      [36] Radovic L, Rodriguez-Teinoso F. In: Thrower P A Ed.Chemistry, Physics of Carbon. New York: Marcel Dekker, 1997

    37. [37]

      [37] Sorescu D C, Jordan K D, Avouris P. J Phys Chem B, 2001, 105: 11227

    38. [38]

      [38] Du Y Y, Li Z H, Fan K N. Chin J Catal (杜钰珏, 李振华, 范康年. 催化学报), 2013, 34: 1291

    39. [39]

      [39] Hart P J, Vastola F J, Walker P L Jr. Carbon, 1967, 5: 363

    40. [40]

      [40] Suenaga K, Koshino M. Nature, 2010, 468: 1088

    41. [41]

      [41] Sherman A, Eyring H. J Am Chem Soc, 1932, 54: 2661

    42. [42]

      [42] Atamny F, Bloecker J, Duebotzky A, Kurt H, Timpe O, Loose G, Mahdi W, Schlögl R. Mol Phys, 1992, 76: 851

    43. [43]

      [43] Khavryuchenko O V, Frank B, Trunschke A, Hermann K, Schlögl R. J Phys Chem C, 2013, 117: 6225

    44. [44]

      [44] Madeira L M, Portela M F. Catal Rev-Sci Eng, 2002, 44: 247

    45. [45]

      [45] Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322: 73

    46. [46]

      [46] Zhao T J, Sun W Z, Gu X Y, RØnning M, Chen D, Dai Y C, Yuan W K, Holmen A. Appl Catal A, 2007, 323: 135

    47. [47]

      [47] Mckee D W. Chem Phys Carbon, 1981, 16: 1

    48. [48]

      [48] Wu X X, Radovic L R. Carbon, 2006, 44: 141

    49. [49]

      [49] Chen D, Moljord K, Holmen A. Microporous Mesoporous Mater, 2012, 164: 239

    50. [50]

      [50] Wang X, Xie Y C. Reac Kinet Catal Lett, 2000, 70: 43

    51. [51]

      [51] Oh S G, Rodriguez N M. J Mater Res, 1993, 8: 2879

    52. [52]

      [52] McKee D W, Spiro C L, Lamby E J. Carbon, 1984, 22: 285

    53. [53]

      [53] Rodriguez N M, BAKER R T K. J Mater Res, 1993, 8: 1886

    54. [54]

      [54] Garcia-Bordeje E, Pereira M F R, Ronning M, Chen D. Catalysis,2014, 26: 72

    55. [55]

      [55] Hoffman W P, Vastola F J, Walker P L Jr. Carbon, 1984, 22: 585

    56. [56]

      [56] Frank B, Wrabetz S, Khavryuchenko O V, Blume R, Trunschke A, Schlögl R. ChemPhysChem, 2011, 12: 2709

    57. [57]

      [57] Castillejos E, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A. Carbon, 2012, 50: 2731

    58. [58]

      [58] Cavani F, Trifirò F. Appl Catal A, 1995, 133: 219

    59. [59]

      [59] Cavani F, Ballarini N, Cericola A. Catal Today, 2007, 127: 113

    60. [60]

      [60] Grabowski R. Catal Rev-Sci Eng, 2006, 48: 199

    61. [61]

      [61] Håkonsen S F, Holmen A. In: Ertl G, Knözinger H, Schüth F, Weitkamp J eds.Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH, 2008. 3384

    62. [62]

      [62] Su D S, Maksimova N I, Mestl G, Kuznetsov V L, Keller V, Schlögl R, Keller N. Carbon, 2007, 45: 2145

    63. [63]

      [63] Suzuki T, Nakagawa K. J Jpn Petrol Inst, 2011, 54(2): 66

    64. [64]

      [64] Cao Y H, Luo X Y, Yu H, Peng F, Wang H J, Ning G Q. Catal Sci Technol, 2013, 3: 2654

    65. [65]

      [65] Pereira M F R, Figueiredo J L, Órfão J J M, Serp P, Kalck P, Kihn Y. Carbon, 2004, 42: 2807

    66. [66]

      [66] Su D S, Maksimova N, Delgado J J, Keller N, Mestl G, Ledoux M J, Schlögl R. Catal Today, 2005, 102-103: 110

    67. [67]

      [67] Resasco D E. Nat Nanotechnol, 2008, 3: 708

    68. [68]

      [68] Su D S, Chen X W, Liu X, Delgado J J, Schlögl R, Gajovic A. Adv Mater, 2008, 20: 3597

    69. [69]

      [69] Nigrovski B, Scholz P, Krech T, Qui N V, Pollok K, Keller T, Ondruschka B. Catal Commun, 2009, 10: 1473

    70. [70]

      [70] Delgado J J, Chen X, Tessonnier J P, Schuster M E, Del Rio E, Schlögl R, Su D S. Catal Today, 2010, 150: 49

    71. [71]

      [71] Frank B, Rinaldi A, Blume R, Schlögl R, Su D S. Chem Mater, 2010, 22: 4462

    72. [72]

      [72] Rinaldi A, Zhang J, Frank B, Su D S, Abd Hamid S B, Schlögl R. ChemSusChem, 2010, 3: 254

    73. [73]

      [73] Qui N V, Scholz P, Krech T, Keller T F, Pollok K, Ondruschka B. Catal Commun, 2011, 12: 464

    74. [74]

      [74] Qui N V, Scholz P, Keller T F, Pollok K, Ondruschka B. Chem Eng Technol, 2013, 36: 300

    75. [75]

      [75] Yuan H, Liu H Y, Diao J Y, Gu X M, Su D S. New Carbon Mater, 2013, 28: 336

    76. [76]

      [76] Rao R C, Yang M, Ling Q, Li C S, Zhang Q Y, Yang H X, Zhang A M. Catal Sci Technol, 2014, 4: 665

    77. [77]

      [77] Xia W, Hagen V, Kundu S, Wang Y M, Somsen C, Eggeler G, Sun G G, Grundmeier G, Stratmann M, Muhler M. Adv Mater, 2007, 19: 3648

    78. [78]

      [78] Liu X, Su D S, Schlögl R. Carbon, 2008, 46: 547

    79. [79]

      [79] Zhang J, Comotti M, Schüth F, Schlögl R, Su D S. Chem Commun, 2007: 1916

    80. [80]

      [80] Arrigo R, Hävecker M, Schlögl R, Su D S. Chem Commun, 2008: 4891

    81. [81]

      [81] Zhang J, Müller J O, Zheng W Q, Wang D, Su D S, Schlögl R. Nano Lett, 2008, 8: 2738

    82. [82]

      [82] Zhang J, Hu, Y S, Tessonnier J P, Weinberg G, Maier J, Schlögl R, Su D S. Adv Mater, 2008, 20: 1450

    83. [83]

      [83] Chen C L, Zhang J, Peng F, Su D S. Mater Res Bull, 2013, 48: 3218

    84. [84]

      [84] Frank B, Morassutto M, Schomaecker R, Schlögl R, Su D S. ChemCatChem, 2010, 2: 644

    85. [85]

      [85] Ewels C P, Glerup M. J Nanosci Nanotechnol, 2005, 5: 1345

    86. [86]

      [86] Herrero M A, Prato M. Mol Cryst Liq Cryst, 2008, 483: 21

    87. [87]

      [87] Lan Y C, Wang Y, Ren Z F. Adv Phys, 2011, 60: 553

    88. [88]

      [88] Rummeli M H, Bachmatiuk A, Borrnert F, Schaffel F, Ibrahim I, Cendrowski K, Simha-Martynkova G, Placha D, Borowiak-Palen E, Cuniberti G, Buchner B. Nanoscale Res Lett, 2011, 6: 303

    89. [89]

      [89] Tarasov B P, Muradyan V E, Volodin A A. Russ Chem Bull, 2011, 60: 1261

    90. [90]

      [90] Li B, Su D S. J Phys Chem C, 2013, 117: 17485

    91. [91]

      [91] Rao R C, Zhang Q Y, Liu H D, Yang H X, Ling Q, Yang M, Zhang A M, Chen W. J Mol Catal A, 2012, 363-364: 283

    92. [92]

      [92] Guo X F, Kim J H, Kim G J. Catal Today, 2011, 164: 336

    93. [93]

      [93] Xia W, Yin X L, Kundu S, Sánchez M, Birkner A, Wöll C, Muhler M. Carbon, 2011, 49: 299

    94. [94]

      [94] Zhang J, Su D S, Schlögl R. Phys Status Solid B, 2009, 246: 2502

    95. [95]

      [95] Nigrovski B, Zavyalova U, Scholz P, Pollok K, Müller M, Ondruschka B. Carbon, 2008, 46: 1678

    96. [96]

      [96] Xia W, Hagen V, Kundu S, Wang Y M, Somsen C, Eggeler G, Sun G G, Grundmeier G, Stratmann M, Muhler M. Adv Mater, 2007, 19: 3648

    97. [97]

      [97] Zhang Z Y, Cho K. Phys Rev B, 2007, 75: 075420

    98. [98]

      [98] Li P, Zhao T J, Zhou J H, Sui Z J, Dai Y C, Yuan W K. Carbon, 2005, 43: 2701

    99. [99]

      [99] Su D S, Chen X W, Weinberg G, Klein-Hofmann A, Timpe O, Abd Hamid S B, Schlögl R. Angew Chem Int Ed, 2005, 44: 5488

    100. [100]

      [100] Sui Z J, Zhao T J, Zhou J H, Li P, Dai Y C. Chin J Catal (隋志军, 赵铁均, 周静红, 李平, 戴迎春. 催化学报), 2005, 26: 521

    101. [101]

      [101] Sui Z J, Zhou J H, Dai Y C, Yuan W K. Catal Today, 2005, 106: 90

    102. [102]

      [102] Delgado J J, Su D S, Rebmann G, Keller N, Gajovic A, Schlögl R. J Catal, 2006, 244: 126

    103. [103]

      [103] Delgado J J, Vieira R, Rebmann G, Su D S, Keller N, Ledoux M J, Schlögl R. Carbon, 2006, 44: 809

    104. [104]

      [104] Li P, Li T, Zhou J H, Sui Z J, Dai Y C, Yuan W K, Chen D. Microporous Mesoporous Mater, 2006, 95: 1

    105. [105]

      [105] Delgado J J, Chen X. W, Su D S, Hamid S B A, Schlögl R. J Nanosci Nanotechnol, 2007, 7: 3495

    106. [106]

      [106] Zhang J, Su D S, Zhang A H, Wang D, Schlögl R, Hebert C. Angew Chem Int Ed, 2007, 46: 7319

    107. [107]

      [107] Keller N, Maksimova N I, Roddatis V V, Schur M, Mestl G, Butenko Y V, Kuznetsov V L, Schlögl R. Angew Chem Int Ed, 2002, 41: 1885

    108. [108]

      [108] Mestl G, Maksimova N I, Keller N, Roddatis V V, Schlögl R. Angew Chem Int Ed, 2001, 40: 2066

    109. [109]

      [109] Michorczyk P, Kuśtrowski P, Niebrzydowska P, Wach A. Appl Catal A, 2012, 445-446: 321

    110. [110]

      [110] Tang S B, Cao Z X. Phys Chem Chem Phys, 2012, 14: 16558

    111. [111]

      [111] James D H, Castor W M. Ullmanns Encyclopedia of Industrial Chemistry, 5 ed., VCH, Weinheim, 1994

    112. [112]

      [112] Lisovskii A E, Aharoni C. Catal Rev-Sci Eng, 1994, 36: 25

    113. [113]

      [113] Oganowski W, Hanuza J, Kepiński L. Appl Catal A, 1998, 171: 145

    114. [114]

      [114] Emig G, Hofmann H. J Catal, 1983, 84: 15

    115. [115]

      [115] Zhou J H, Sui Z J, Zhu J, Li P, Chen D, Dai Y C, Yuan W K. Carbon, 2007, 45: 785

    116. [116]

      [116] Rodríguez-reinoso F. Carbon, 1998, 36: 159

    117. [117]

      [117] Boehm H P, Diehl E. Zeitschrift Elektrochem, 1962, 66: 642

    118. [118]

      [118] Schwartz V, Overbury S H, Liang C D. ACS Symposium Series, 2013, 1132: 247

    119. [119]

      [119] Schwartz V, Fu W J, Tsai Y T, Meyer H M III, Rondinone A J, Chen J H, Wu Z L, Overbury S H, Liang C D. ChemSusChem, 2013, 6: 840

    120. [120]

      [120] Cavani F, Trifirò F. Catal Today, 1995, 24: 307

    121. [121]

      [121] Sui Z J. [PhD dissertation]. Shanghai: East China University of Science and Technology, 2005

    122. [122]

      [122] Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Chem Commun, 2011, 47: 8334

    123. [123]

      [123] Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. Catal Commun, 2011, 16: 81

    124. [124]

      [124] Wang Y, Xia W S, Weng W Z. J Xiamen Univ (Nat Sci) (王野, 夏文生, 翁维正. 厦门大学学报(自然科学版)), 2011, 50: 341

    125. [125]

      [125] Liu L, Deng Q F, Agula B, Ren T Z, Liu Y P, Zhaorigetu B, Yuan Z Y. Catal Today, 2012, 186: 35

    126. [126]

      [126] Boehm H P. Carbon, 2002, 40: 145

    127. [127]

      [127] Figueiredo J L, Pereira M F R, Freitas M M A, Órfão J J M. Carbon, 1999, 37: 1379

    128. [128]

      [128] Park C, Baker R T K. J Phys Chem B, 1999, 103: 2453

    129. [129]

      [129] Chen C L, Zhang J, Zhang B S, Yu C L, Peng F, Su D S. Chem Commun, 2013, 49: 8151

    130. [130]

      [130] Hu X B, Wu Y T, Li H R, Zhang Z B. J Phys Chem C, 2010, 114: 9603

    131. [131]

      [131] van Dommele S, de Jong K P, Bitter J H. Chem Commun, 2006: 4859

    132. [132]

      [132] Li L, Yan Z F. Prog Chem (李丽, 阎子峰. 化学进展), 2005, 17: 651

    133. [133]

      [133] Xie H, Wu Z L, Overbury S H, Liang C D, Schwartz V. J Catal, 2009, 267: 158

    134. [134]

      [134] Jang D Y, Jang H G, Kim G R, Kim G-J. Res Chem Intermediates, 2011, 37: 1145

    135. [135]

      [135] Schwartz V, Xie H, Meyer H M III, Overbury S H, Liang C D. Carbon, 2011, 49: 659

  • 加载中
    1. [1]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    2. [2]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    3. [3]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    4. [4]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    5. [5]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    6. [6]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    7. [7]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    8. [8]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    12. [12]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    13. [13]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    14. [14]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    15. [15]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    16. [16]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    17. [17]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    18. [18]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    19. [19]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    20. [20]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

Metrics
  • PDF Downloads(180)
  • Abstract views(570)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return