Citation:
Daniel E. Resasco. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems[J]. Chinese Journal of Catalysis,
;2014, 35(6): 798-806.
doi:
10.1016/S1872-2067(14)60119-4
-
This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emulsions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fashion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several examples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru; and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emulsion generates important advantages, such as increased liquid/liquid interfacial area that consequently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.
-
-
-
[1]
[1] Li N, Tompsett G A, Zhang T Y, Shi J A, Wyman C E, Huber G W. Green Chem, 2011, 13: 91
-
[2]
[2] Joo F. Acc Chem Res, 2002, 35: 738
-
[3]
[3] Wiebus E, Cornils B. In: Cole-Hamilton D J, Tooze R P eds. Catalysis Separation, Recovery and Recycling. Dordrecht, Netherlands: Springer, 2006. 105
-
[4]
[4] Schmitt T M. Analysis of Surfactants. 2nd Ed. New York: Marcel Dekker, Inc, 2001
-
[5]
[5] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327: 68
-
[6]
[6] Cole-Hamilton D J. Science, 2010, 327: 41
-
[7]
[7] Ungureanu S, Deleuze H, Sanchez C, Popa M I, Backov R. Chem Mater, 2008, 20: 6494
-
[8]
[8] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044
-
[9]
[9] Vispute T P, Zhang H Y, Sanna A, Xiao R, Huber G W. Science, 2010, 330: 1222
-
[10]
[10] Huber G W, Dumesic J A. Catal Today, 2006, 111: 119
-
[11]
[11] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447: 982
-
[12]
[12] Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Science, 2008, 322: 417
-
[13]
[13] Casanova O, Iborra S, Corma A. J Catal,2010, 275: 236
-
[14]
[14] Gao J B, Wang S G, Jiang Z X, Lu H Y, Yang Y X, Jing F, Li C. J Mol Catal A, 2006, 258: 261
-
[15]
[15] Lü H Y, Gao J B, Jiang Z X, Jing F, Yang Y X, Wang G, Li C. J Catal, 2006, 239: 369
-
[16]
[16] Van Steen E, Claeys M. Chem Eng Technol, 2008, 31: 655
-
[17]
[17] Bridgwater A V. Therm Sci, 2004, 8(2): 21
-
[18]
[18] Binks B P, Fletcher P D I. Langmuir, 2001, 17: 4708
-
[19]
[19] Binks B P, Lumsdon S O. Phys Chem Chem Phys, 1999, 1: 3007
-
[20]
[20] Hunter T N, Pugh R J, Franks G V, Jameson G J. Adv Colloid Interf Sci, 2008, 137: 57
-
[21]
[21] Arditty S, Whitby C P, Binks B P, Schmitt V, Leal-Calderon F. Eur Phys J E,2003, 11: 273
-
[22]
[22] Aveyard R, Clint J H, Horozov T S. Phys Chem Chem Phys, 2003, 5: 2398
-
[23]
[23] Kralchevsky P A, Ivanov I B, Ananthapadmanabhan K P, Lips A. Langmuir,2005, 21: 50
-
[24]
[24] Binks B P. Curr Opin Colloid Interface Sci, 2002, 7: 21
-
[25]
[25] Binks B P, Rodrigues J A. Angew Chem Int Ed, 2005, 44: 441
-
[26]
[26] Stadler R, Auschra C, Beckmann J, Krappe U, Voigt-Martin I, Leibler L. Macromolecules, 1995, 28: 3080
-
[27]
[27] Takei H, Shimizu N. Langmuir, 1997, 13: 1865
-
[28]
[28] Forster S, Antonietti M. Adv Mater, 1998, 10: 195
-
[29]
[29] Liu Y F, Abetz V, Muller A H E. Macromolecules, 2003, 36: 7894
-
[30]
[30] Vanakaras A G. Langmuir, 2006, 22: 88
-
[31]
[31] Cayre O, Paunov V N, Velev O D. Chem Commun, 2003: 2296
-
[32]
[32] Shen M, Resasco D E. Langmuir, 2009, 25: 10843
-
[33]
[33] Prasomsri T, Shi D C, Resasco D E. Chem Phys Lett,2010, 497: 103
-
[34]
[34] Bancroft W D. J Phys Chem, 1913, 17: 501
-
[35]
[35] Morrison I D, Ross S. Colloidal Dispersions: Suspensions, Emulsions and Foams. New York: Wiley, 2002
-
[36]
[36] Pickering S U. J Chem Soc, 1907, 91: 2001
-
[37]
[37] Resasco D E, Alvarez W E, Pompeo F, Balzano L, Herrera J E, Kitiyanan B, Borgna A. J Nanopart Res, 2002, 4: 131
-
[38]
[38] Arthur D, Silvy R P, Wallis P, Tan Y Q, Rocha J D R, Resasco D, Praino R, Hurley W. MRS Bull, 2012, 37: 1297
-
[39]
[39] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Science, 1998, 282: 95
-
[40]
[40] Tchoul M N, Ford W T, Lolli G, Resasco D E, Arepalli S. Chem Mater, 2007, 19: 5765
-
[41]
[41] Singh J P, Zhang X G, Li H L, Singh A, Singh R N. Int J Electrochem Sci, 2008, 3: 416
-
[42]
[42] Satishkumary B C, Voglz E M, Govindaraj A, Rao C N R. J Phys D, 1996, 29: 3173
-
[43]
[43] Bittencourt C, Felten A, Douhard B, Colomer J-F, Van Tendeloo G, Drube W, Ghijsen J, Pireaux JJ. Surf Sci, 2007, 601: 2800
-
[44]
[44] Ruiz M P, Faria J, Shen M, Drexler S, Prasomsri T, Resasco D E. ChemSusChem,2011, 4: 964
-
[45]
[45] Felten A, Ghijsen J J, Pireaux J J, Drube W, Johnson R L, Liang D, Hecq M, Van Jendeloo G, Bittencourt C. Micron, 2009, 40: 74
-
[46]
[46] Li W Z, Liang C H, Zhou W J, Qiu J S, Zhou Z H, Sun G Q, Xin Q. J Phys Chem B, 2003, 107: 6292
-
[47]
[47] Liu C C, Bolin T, Northrup P, Lee S, McEnally C, Kelleher P, Pfefferle L, Haller G L. Top Catal, 2014, 57: 693
-
[48]
[48] Shi D C. [PhD Dissertation]. Norman, OK: The University of Oklahoma, 2014
-
[49]
[49] Faria J, Ruiz M P, Resasco D E. Adv Synth Catal, 2010, 352: 2359
-
[50]
[50] Starks C M. J Am Chem Soc, 1971,93: 195
-
[51]
[51] Madon R J, Iglesia E. J Mol Catal A,2000, 163: 189
-
[52]
[52] Madon R J, O'Connell J P, Boudart M. AIChE J, 1978, 24: 904
-
[53]
[53] Zapata P A, Faria J, Pilar Ruiz M, Resasco D E. Top Catal, 2012, 55: 38
-
[54]
[54] Shi D C, Faria J A, Rownaghi A A, Huhnke R L, Resasco D E. Energy Fuels, 2013, 27: 6118
-
[55]
[55] Shi D C, Faria Albanese J A, Pham T N, Resasco D E. ACS Catal, 2014, DOI: 10.1021/cs500040n
-
[56]
[56] Ojeda M, Nabar R, Nilekar A U, Ishikawa A, Mavrikakis M, Iglesia E. J Catal, 2010, 272: 287
-
[57]
[57] Loveless B T, Buda C, Neurock M, Iglesia E. J Am Chem Soc,2013, 135: 6107
-
[58]
[58] Hibbitts D D, Loveless B T, Neurock M, Iglesia E. Angew Chem Int Ed,2013, 52: 12273
-
[59]
[59] Sandler J K W, Kirk J E, Kinloch I A, Shaffer M S P, Windle A H. Polymer, 2003, 44: 5893
-
[60]
[60] Pfeifer S, Park S H, Bandaru P R. J Appl Phys, 2010, 108: 024305/1
-
[61]
[61] Barraza H J, Balzano L, Pompeo F, Rueda O L, O'Rear E A, Resasco D E. US Patent 7153903 B2. 2006
-
[62]
[62] Shen M, Resasco D E. unpublished
-
[63]
[63] Mu M F, Walker A M, Torkelson J M, Winey K I. Polymer, 2008, 49: 1332
-
[1]
-
-
-
[1]
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
-
[2]
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
-
[3]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[4]
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
-
[5]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[6]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[7]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[8]
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
-
[9]
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
-
[10]
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
-
[11]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[12]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[13]
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
-
[14]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[15]
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
-
[16]
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
-
[17]
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
-
[18]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[19]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[20]
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
-
[1]
Metrics
- PDF Downloads(263)
- Abstract views(553)
- HTML views(39)