Citation: Daniel E. Resasco. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems[J]. Chinese Journal of Catalysis, ;2014, 35(6): 798-806. doi: 10.1016/S1872-2067(14)60119-4 shu

Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems

  • Corresponding author: Daniel E. Resasco, 
  • Received Date: 17 April 2014
    Available Online: 27 April 2014

    Fund Project: This work was supported by the US Department of Energy/EPSCOR (DE SC00044136.85). (DE SC00044136.85)

  • This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emulsions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fashion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several examples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru; and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emulsion generates important advantages, such as increased liquid/liquid interfacial area that consequently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.
  • 加载中
    1. [1]

      [1] Li N, Tompsett G A, Zhang T Y, Shi J A, Wyman C E, Huber G W. Green Chem, 2011, 13: 91

    2. [2]

      [2] Joo F. Acc Chem Res, 2002, 35: 738

    3. [3]

      [3] Wiebus E, Cornils B. In: Cole-Hamilton D J, Tooze R P eds. Catalysis Separation, Recovery and Recycling. Dordrecht, Netherlands: Springer, 2006. 105

    4. [4]

      [4] Schmitt T M. Analysis of Surfactants. 2nd Ed. New York: Marcel Dekker, Inc, 2001

    5. [5]

      [5] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327: 68

    6. [6]

      [6] Cole-Hamilton D J. Science, 2010, 327: 41

    7. [7]

      [7] Ungureanu S, Deleuze H, Sanchez C, Popa M I, Backov R. Chem Mater, 2008, 20: 6494

    8. [8]

      [8] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044

    9. [9]

      [9] Vispute T P, Zhang H Y, Sanna A, Xiao R, Huber G W. Science, 2010, 330: 1222

    10. [10]

      [10] Huber G W, Dumesic J A. Catal Today, 2006, 111: 119

    11. [11]

      [11] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447: 982

    12. [12]

      [12] Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Science, 2008, 322: 417

    13. [13]

      [13] Casanova O, Iborra S, Corma A. J Catal,2010, 275: 236

    14. [14]

      [14] Gao J B, Wang S G, Jiang Z X, Lu H Y, Yang Y X, Jing F, Li C. J Mol Catal A, 2006, 258: 261

    15. [15]

      [15] Lü H Y, Gao J B, Jiang Z X, Jing F, Yang Y X, Wang G, Li C. J Catal, 2006, 239: 369

    16. [16]

      [16] Van Steen E, Claeys M. Chem Eng Technol, 2008, 31: 655

    17. [17]

      [17] Bridgwater A V. Therm Sci, 2004, 8(2): 21

    18. [18]

      [18] Binks B P, Fletcher P D I. Langmuir, 2001, 17: 4708

    19. [19]

      [19] Binks B P, Lumsdon S O. Phys Chem Chem Phys, 1999, 1: 3007

    20. [20]

      [20] Hunter T N, Pugh R J, Franks G V, Jameson G J. Adv Colloid Interf Sci, 2008, 137: 57

    21. [21]

      [21] Arditty S, Whitby C P, Binks B P, Schmitt V, Leal-Calderon F. Eur Phys J E,2003, 11: 273

    22. [22]

      [22] Aveyard R, Clint J H, Horozov T S. Phys Chem Chem Phys, 2003, 5: 2398

    23. [23]

      [23] Kralchevsky P A, Ivanov I B, Ananthapadmanabhan K P, Lips A. Langmuir,2005, 21: 50

    24. [24]

      [24] Binks B P. Curr Opin Colloid Interface Sci, 2002, 7: 21

    25. [25]

      [25] Binks B P, Rodrigues J A. Angew Chem Int Ed, 2005, 44: 441

    26. [26]

      [26] Stadler R, Auschra C, Beckmann J, Krappe U, Voigt-Martin I, Leibler L. Macromolecules, 1995, 28: 3080

    27. [27]

      [27] Takei H, Shimizu N. Langmuir, 1997, 13: 1865

    28. [28]

      [28] Forster S, Antonietti M. Adv Mater, 1998, 10: 195

    29. [29]

      [29] Liu Y F, Abetz V, Muller A H E. Macromolecules, 2003, 36: 7894

    30. [30]

      [30] Vanakaras A G. Langmuir, 2006, 22: 88

    31. [31]

      [31] Cayre O, Paunov V N, Velev O D. Chem Commun, 2003: 2296

    32. [32]

      [32] Shen M, Resasco D E. Langmuir, 2009, 25: 10843

    33. [33]

      [33] Prasomsri T, Shi D C, Resasco D E. Chem Phys Lett,2010, 497: 103

    34. [34]

      [34] Bancroft W D. J Phys Chem, 1913, 17: 501

    35. [35]

      [35] Morrison I D, Ross S. Colloidal Dispersions: Suspensions, Emulsions and Foams. New York: Wiley, 2002

    36. [36]

      [36] Pickering S U. J Chem Soc, 1907, 91: 2001

    37. [37]

      [37] Resasco D E, Alvarez W E, Pompeo F, Balzano L, Herrera J E, Kitiyanan B, Borgna A. J Nanopart Res, 2002, 4: 131

    38. [38]

      [38] Arthur D, Silvy R P, Wallis P, Tan Y Q, Rocha J D R, Resasco D, Praino R, Hurley W. MRS Bull, 2012, 37: 1297

    39. [39]

      [39] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Science, 1998, 282: 95

    40. [40]

      [40] Tchoul M N, Ford W T, Lolli G, Resasco D E, Arepalli S. Chem Mater, 2007, 19: 5765

    41. [41]

      [41] Singh J P, Zhang X G, Li H L, Singh A, Singh R N. Int J Electrochem Sci, 2008, 3: 416

    42. [42]

      [42] Satishkumary B C, Voglz E M, Govindaraj A, Rao C N R. J Phys D, 1996, 29: 3173

    43. [43]

      [43] Bittencourt C, Felten A, Douhard B, Colomer J-F, Van Tendeloo G, Drube W, Ghijsen J, Pireaux JJ. Surf Sci, 2007, 601: 2800

    44. [44]

      [44] Ruiz M P, Faria J, Shen M, Drexler S, Prasomsri T, Resasco D E. ChemSusChem,2011, 4: 964

    45. [45]

      [45] Felten A, Ghijsen J J, Pireaux J J, Drube W, Johnson R L, Liang D, Hecq M, Van Jendeloo G, Bittencourt C. Micron, 2009, 40: 74

    46. [46]

      [46] Li W Z, Liang C H, Zhou W J, Qiu J S, Zhou Z H, Sun G Q, Xin Q. J Phys Chem B, 2003, 107: 6292

    47. [47]

      [47] Liu C C, Bolin T, Northrup P, Lee S, McEnally C, Kelleher P, Pfefferle L, Haller G L. Top Catal, 2014, 57: 693

    48. [48]

      [48] Shi D C. [PhD Dissertation]. Norman, OK: The University of Oklahoma, 2014

    49. [49]

      [49] Faria J, Ruiz M P, Resasco D E. Adv Synth Catal, 2010, 352: 2359

    50. [50]

      [50] Starks C M. J Am Chem Soc, 1971,93: 195

    51. [51]

      [51] Madon R J, Iglesia E. J Mol Catal A,2000, 163: 189

    52. [52]

      [52] Madon R J, O'Connell J P, Boudart M. AIChE J, 1978, 24: 904

    53. [53]

      [53] Zapata P A, Faria J, Pilar Ruiz M, Resasco D E. Top Catal, 2012, 55: 38

    54. [54]

      [54] Shi D C, Faria J A, Rownaghi A A, Huhnke R L, Resasco D E. Energy Fuels, 2013, 27: 6118

    55. [55]

      [55] Shi D C, Faria Albanese J A, Pham T N, Resasco D E. ACS Catal, 2014, DOI: 10.1021/cs500040n

    56. [56]

      [56] Ojeda M, Nabar R, Nilekar A U, Ishikawa A, Mavrikakis M, Iglesia E. J Catal, 2010, 272: 287

    57. [57]

      [57] Loveless B T, Buda C, Neurock M, Iglesia E. J Am Chem Soc,2013, 135: 6107

    58. [58]

      [58] Hibbitts D D, Loveless B T, Neurock M, Iglesia E. Angew Chem Int Ed,2013, 52: 12273

    59. [59]

      [59] Sandler J K W, Kirk J E, Kinloch I A, Shaffer M S P, Windle A H. Polymer, 2003, 44: 5893

    60. [60]

      [60] Pfeifer S, Park S H, Bandaru P R. J Appl Phys, 2010, 108: 024305/1

    61. [61]

      [61] Barraza H J, Balzano L, Pompeo F, Rueda O L, O'Rear E A, Resasco D E. US Patent 7153903 B2. 2006

    62. [62]

      [62] Shen M, Resasco D E. unpublished

    63. [63]

      [63] Mu M F, Walker A M, Torkelson J M, Winey K I. Polymer, 2008, 49: 1332

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    3. [3]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    4. [4]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    9. [9]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    10. [10]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    11. [11]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    12. [12]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    13. [13]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    14. [14]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    15. [15]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    16. [16]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    17. [17]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    18. [18]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    19. [19]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    20. [20]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

Metrics
  • PDF Downloads(263)
  • Abstract views(553)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return