Citation: Yingsi Wu, Hao Yu, Hongjuan Wang, Feng Peng. Controllable synthesis and catalytic performance of graphene-supported metal oxide nanoparticles[J]. Chinese Journal of Catalysis, ;2014, 35(6): 952-959. doi: 10.1016/S1872-2067(14)60114-5 shu

Controllable synthesis and catalytic performance of graphene-supported metal oxide nanoparticles

  • Corresponding author: Hao Yu,  Feng Peng, 
  • Received Date: 18 March 2014
    Available Online: 18 April 2014

    Fund Project: 国家自然科学基金(20806027,21273079);广东省自然科学基金(S20120011275);新世纪优秀人才支持计划(NCET-12-0190). (20806027,21273079);广东省自然科学基金(S20120011275);新世纪优秀人才支持计划(NCET-12-0190)

  • The size of nanoparticles plays a crucial role in their performance. In this article, three methods, i.e., direct impregnation, homogeneous oxidative precipitation with hydrogen peroxide, and ammonia-catalyzed hydrolysis, were applied to synthesize iron, cobalt, and nickel metal oxide nanoparticles supported on graphene. The influence of the three deposition methods on particle size distribution was investigated. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the catalysts. The highest dispersion and the most uniform particle size distribution were obtained by the hydrogen peroxide homogeneous oxidative precipitation method. Hydrogen peroxide favors the maximization of the oxygen-containing groups on graphenes, thereby providing sufficient absorption and nucleation sites to give a high dispersion of nanoparticles. In contrast, ammonia accelerates the nucleation speed and results in the largest particle size and inhomogeneity. The catalytic properties of the graphene-supported metal oxide nanoparticles were tested with the oxidation of benzyl alcohol as a probe reaction. The reaction activity decreased in the following order: catalysts prepared by hydrogen peroxide-assisted deposition > direct impregnation > ammonia-catalyzed hydrolysis. The decrease in reaction activity was consistent with the order of increasing catalyst particle sizing shown in transmission electron microscopy images. The catalytic relevance of the particle size showed a necessity for the development of effective methods for size-controlled nanocatalyst synthesis on graphenes.
  • 加载中
    1. [1]

      [1] Balaya P. Energy Environ Sci, 2008, 1: 645

    2. [2]

      [2] Cheng M Y, Ye Y S, Chiu T M, Pan C J, Hwang B J. J Power Sources, 2014, 253: 27

    3. [3]

      [3] Li Y, Liu Q Y, Shen W J. Dalton Trans, 2011, 40: 5811

    4. [4]

      [4] Hu H, Zhao Z B, Wan W B, Gogotsi Y, Qiu J S. Adv Mater, 2013, 25: 2219

    5. [5]

      [5] Wang Z L, Xu D, Wang H G, Wu Z, Zhang X B. ACS Nano, 2013, 7: 2422

    6. [6]

      [6] Phua P H, Lefort L, Boogers J A F, de Tristany M, Vries J G. Chem Commun, 2009: 3747

    7. [7]

      [7] Lin J K, Qiao B T, Liu J Y, Huang Y Q, Wang A Q, Li L, Zhang W S, Allard L F, Wang X D, Zhang T. Angew Chem Int Ed, 2012, 51: 2920

    8. [8]

      [8] Zhu J, Kailasam K, Fischer A, Thomas A. ACS Catal, 2011, 1: 342

    9. [9]

      [9] He Q G, Li Q, Khene S, Ren X M, López-Suárez F E, Lozano-Castelló D, Bueno-López A, Wu G. J Phys Chem C, 2013, 117: 8697

    10. [10]

      [10] Galvis H M T, Bitter J H, Davidian T, Ruitenbeek M, Dugulan A I, de Jong K P. J Am Chem Soc, 2012, 134: 16207

    11. [11]

      [11] Fu T J, Lü J, Li Z H. Ind Eng Chem Res, 2014, 53: 1342

    12. [12]

      [12] Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. Catal Lett, 2014, 144: 133

    13. [13]

      [13] Pina G, Louis C, Keane M A. Phys Chem Chem Phys, 2003, 5: 1924

    14. [14]

      [14] Du A J, Ng Y H, Bell N J, Zhu Z H, Amal R, Smith S C. J Phys Chem Lett, 2011, 2: 894

    15. [15]

      [15] Sun Y Q, Shi G Q. J Polym Sci Pt B-Polym Phys, 2013, 51: 231

    16. [16]

      [16] Kou R, Shao Y Y, Wang D H, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C M, Lin Y H, Wang Y, Aksay I A, Liu J. Electrochem Commun, 2009, 11: 954

    17. [17]

      [17] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6: 3206

    18. [18]

      [18] Gao Y J, Ma D, Hu G, Zhai P, Bao X H, Zhu B, Zhang B S, Su D S. Angew Chem Int Ed, 2011, 50: 10236

    19. [19]

      [19] Byon H R, Suntivich J, Shao-Horn Y. Chem Mater, 2011, 23: 3421

    20. [20]

      [20] Zhang G Q, Lou X W. Sci Rep, 2013, 3: 1470

    21. [21]

      [21] Myung S, Park J, Lee H, Kim K S, Hong S. Adv Mater, 2010, 22: 2045

    22. [22]

      [22] Mao S, Lu G H, Yu K H, Bo Z. Chen J H. Adv Mater, 2010, 22: 3521

    23. [23]

      [23] Zhang G Q, Xia B Y, Wang X, Lou X W. Adv Mater, 2013, 26: 2408

    24. [24]

      [24] Tien H W, Huang Y L, Yang S Y, Wang J Y, Ma C M. Carbon, 2011, 49: 1550

    25. [25]

      [25] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y. ACS Appl Mater Inter, 2012, 4: 4623

    26. [26]

      [26] Ji Z Y, Shen X P, Zhu G X, Zhou H, Yuan A H. J Mater Chem, 2012, 22: 3471

    27. [27]

      [27] Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F, Cheng H M. ACS Nano, 2010, 4: 3187

    28. [28]

      [28] Gotoh K, Kinumoto T, Fujii E, Yamamoto A, Hashimoto H, Ohkubo T, Itadani A, Kuroda Y, Ishida H. Carbon, 2011, 49: 1118

    29. [29]

      [29] Liu Y W, Guan M X, Feng L, Deng S L, Bao J F, Xie S Y, Chen Z, Huang R B, Zheng L S. Nanotechnol, 2013, 24: 025604

    30. [30]

      [30] Ren L L, Huang S, Fan W, Liu T X. Appl Surf Sci, 2011, 258: 1132

    31. [31]

      [31] Zhu J X, Sharma Y K, Zeng Z Y, Zhang X J, Srinivasan M, Mhaisalkar S, Zhang H, Hng H H, Yan Q Y. J Phys Chem C, 2011, 115: 8400

    32. [32]

      [32] Fang M, Chen Z X, Wang S Z, Lu H B. Nanotechnol, 2012, 23: 085704

    33. [33]

      [33] Fu X B, Yu H, Peng F, Wang H J, Qian Y. Appl Catal A, 2007, 321: 190

    34. [34]

      [34] Wu Y S, Yu H, Peng F, Wang H J. Mater Lett, 2012, 67: 245

    35. [35]

      [35] Chen Y T, Wang H P, Liu C J, Zeng Z Y, Zhang H, Zhou C M, Jia X L, Yang Y H. J Catal, 2012, 289: 105

    36. [36]

      [36] Chen H, Tang Q H, Chen Y T, Yan Y B, Zhou C M, Guo Z, Jia X L, Yang Y H. Catal Sci Technol, 2013, 3: 328

    37. [37]

      [37] Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Catal Today, 2013, 211: 104

    38. [38]

      [38] Zhou X T, Ji H B. Chin J Catal (周贤太, 纪红兵. 催化学报), 2012, 33: 1906

    39. [39]

      [39] Wu S X, He Q Y, Zhou C M, Qi X Y, Huang X, Yin Z Y, Yang Y H, Zhang H. Nanoscale, 2012, 4: 2478

    40. [40]

      [40] Ali S R, Chandra P, Latwal M, Jain S K, Bansal V K, Singh S P. Chin J Catal (催化学报), 2011, 32: 1844

    41. [41]

      [41] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Chem Mater, 1999, 11: 771

    42. [42]

      [42] Zhang J T, Xiong Z G, Zhao X S. J Mater Chem, 2011, 21: 3634

    43. [43]

      [43] Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang B, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J Am Chem Soc, 2013, 135: 2273

    44. [44]

      [44] Wang C M, Baer D R, Amonette J E, Engelhard M H, Antony J, Qiang Y. J Am Chem Soc, 2009, 131: 8824

    45. [45]

      [45] Koo B, Xiong H, Slater M D, Prakapenka V B, Baasubramanian M, Podsiadlo P, Johnson C S, Rajh T, Shevchenko E V. Nano Lett, 2012, 12: 2429

    46. [46]

      [46] Yan J, Zhao Z W, Pan L K. Phys Status Solidi (A), 2011, 208: 2335

    47. [47]

      [47] Zhang Y J, Hu W B, Li B, Peng C, Fan C H, Huang Q. Nanotechnol, 2011, 22: 345601

    48. [48]

      [48] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326

    49. [49]

      [49] Chuang T J, Brundle C R, Rice D W. Surf Sci, 1976, 59: 413

    50. [50]

      [50] Ji H B, Wang T T, Zhang M Y, Chen Q L, Gao X N. React Kinet Catal Lett, 2007, 90: 251

    51. [51]

      [51] Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang P, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J Am Chem Soc, 2013, 135: 2273

    52. [52]

      [52] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余运波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283

    53. [53]

      [53] Yan X H, Zhang G R, Xu B Q. Chin J Catal (严祥辉, 张贵荣, 徐柏庆. 催化学报), 2013, 34: 1992

    54. [54]

      [54] Zhang K J, Zhang L X, Chen X, He X, Wang X G, Dong S M, Han P X, Zhang C J, Wang S, Gu L, Cui G L. J Phys Chem C, 2012, 117: 858

    55. [55]

      [55] Liao L, Zhang Q H, Su ZH, Zhao Z Z, Wang Y N, Li Y, Lu X X, Wei D G, Feng G Y, Yu Q K, Cai X J, Zhao J M, Ren Z F, Fang H, Robles-Hernandez F, Baldelli S, Bao J M. Nat Nanotechnol, 2014, 9: 69

    56. [56]

      [56] Zhu L H, Zheng L, Du K Q, Fu H, Li Y H, You G R, Chen B H. RSC Adv, 2013, 3: 713

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(0)
  • Abstract views(1243)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return