Citation: Attaullah Bukhari, Ani Idris, Madiha Atta, Teo Chee Loong. Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1555-1564. doi: 10.1016/S1872-2067(14)60111-X shu

Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification

  • Corresponding author: Ani Idris, 
  • Received Date: 21 February 2014
    Available Online: 14 April 2014

  • Nanopolystyrene was used as a solid support for the covalent immobilization of Candida antarctica lipase B (CalB) using the photoreactive reagent 1-fluoro-2-nitro-4-azido benzene (FNAB) as a coupling reagent. The obtained derivative was then used as a biocatalyst in a microwave assisted esterification experiment. Factors such as contact time, pH, and enzyme concentration were investigated during immobilization. The hydrolytic activity, thermal, and operational stability of immobilized-CalB were determined. The maximum immobilized yield (218 µg/mg support) obtained at pH 6.8 exhibited optimum hydrolytic activity (4.42 × 103 mU p-nitrophenol/min). The thermal stability of CalB improved significantly when it was immobilized at pH 10, however, the immobilized yield was very low (93.6 µg/mg support). The immobilized-CalB prepared at pH 6.8 and pH 10 retained 50% of its initial activity after incubation periods of 14 and 16 h, respectively, at 60 ℃. The operational stability was investigated for the microwave assisted esterification of oleic acid with methanol. Immobilized-CalB retained 50% of its initial activity after 15 batch cycles in the microwave-assisted esterification. The esterification time was notably reduced under microwave irradiation. The combined use of a biocatalyst and microwave heating is thus an alternative total green synthesis process.
  • 加载中
    1. [1]

      [1] Clouthierz C M, Pelletier J N. Chem Soc Rev, 2012, 41: 1585

    2. [2]

      [2] Salis A, Meloni D, Ligas S, Casula M F, Monduzzi M, Solinas V, Dumitriu E. Langmuir, 2005, 21: 5511

    3. [3]

      [3] Rodrigues D S, Mendes A A, Adriano W S, Goncalves L R B, Giordano R L C. J Mol Catal B, 2008, 51: 100

    4. [4]

      [4] Brigida A I S, Pinheiro A D T, Ferreira A L O, Pinto G A S, Goncalves L R B. Appl Biochem Biotechnol, 2007, 137: 67

    5. [5]

      [5] Balcao V M, Paiva A L, Malcata F X. Enzyme Microb Technol, 1996, 18: 392

    6. [6]

      [6] Sun J N, Jing Y J, Zhou L Y, Gao J. New Biotechnol, 2010, 27: 53

    7. [7]

      [7] Zhao H, Song Z Y. Biochem Eng J, 2010, 49: 113

    8. [8]

      [8] Idris A, Bukhari A. Biotechnol Adv, 2012, 30: 550

    9. [9]

      [9] Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo J M, Grazu V, Pessela B C C, Giacomini C, Irazoqui G, Villarino A, Ovsejevi K, Batista-Viera F, Fernandez-Lafuente R, Guisan J M. Enzym Microb Technol, 2005, 37: 456

    10. [10]

      [10] Dai T H, Miletic N, Loos K, Elbahri M, Abetz V. Macromol Chem Phys, 2011, 212: 319

    11. [11]

      [11] Boros Z, Weiser D, Markus M, Abahaziova E, Magyar A, Tomin A, Koczka B, Kovacs P, Poppe L. Proc Biochem, 2013, 48: 1039

    12. [12]

      [12] Silva J A, Macedo G P, Rodrigues D S, Giordano R L C, Goncalves L R B. Biochem Eng J, 2012, 60: 16

    13. [13]

      [13] Barbosa O, Ruiz M, Ortiz C, Fernandez M, Torres R, Fernandez-Lafuente R. Proc Biochem, 2012, 47: 867

    14. [14]

      [14] Kim J, Grate J W, Wang P. Trends Biotechnol, 2008, 26: 639

    15. [15]

      [15] Kim J, Grate J W, Wang P. Chem Eng Sci, 2006, 61: 1017

    16. [16]

      [16] Lee S M, Jin L H, Kim J H, Han S O, Na H B, Hyeon T, Koo Y M, Kim J, Lee J H. Bioprocess Biosyst Eng, 2010, 33: 141

    17. [17]

      [17] Fang Y, Huang X J, Chen P C, Xu Z K. BMB Reports, 2011, 44: 87

    18. [18]

      [18] Jain S, Chattopadhyay S, Jackeray R, Abid C K V Z, Singh H. Nanoscale, 2013, 5: 6883

    19. [19]

      [19] Kappe C O. Angew Chem Int Ed, 2004, 43: 6250

    20. [20]

      [20] Nuchter M, Ondruschka B, Bonrath W, Gum A. Green Chem, 2006, 6: 141

    21. [21]

      [21] Wu S S, Liu P, Leng Y, Wang J. Catal Lett, 2009, 132: 500

    22. [22]

      [22] Xu L, Li J, Yang L N, Dong J L, Sun Y M. Int J Sci Eng Res, 2013, 4: 1909

    23. [23]

      [23] Lucena I L, Silva G F, Fernandes F A N. Ind Eng Chem Res, 2008, 47: 6885

    24. [24]

      [24] Bukhari A, Idris A, Atta M. Malay J Fund App Sci, 2014, 10: 28

    25. [25]

      [25] Fleet G W J, Knowles J R, Porter R R. Biochem J, 1972, 128: 499

    26. [26]

      [26] Miletic N, Abetz V, Ebert K, Loos K. Macromol Rapid Commun, 2010, 31: 71

    27. [27]

      [27] Bradford M M. Anal Biochem, 1976, 72: 248

    28. [28]

      [28] Miletic N, Nastasovic A, Loos K. Bioresour Technol, 2012, 115: 126

    29. [29]

      [29] Ebrahimi S, Amini G, Younesi H, Ghasem DN. Mid-East J Sci Res, 2012, 11: 323

    30. [30]

      [30] Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. J Mol Catal B, 2002, 17: 133

    31. [31]

      [31] Mei Y, Miller L, Gao W, Gross R A. Biomacomol, 2003, 4: 70

    32. [32]

      [32] Mohy Eldin M S, El Enshasy H A, Hassan M E, Haroun B, Hassan E A. J Appl Polym Sci, 2012, 125: 3820

    33. [33]

      [33] Ji P J, Atherton J H, Page M I. J Org Chem, 2011, 76: 3286

    34. [34]

      [34] Wong LS, Khan F, Micklefield J. Chem Rev, 2009, 109: 4025

    35. [35]

      [35] Adriano W S, Filho E H C, Silva J A, Giordano R L C, Goncalves L R B. Braz J Chem Eng, 2005, 22: 529

    36. [36]

      [36] Pedroche J, Yust M M, Mateo C, Fernandez-Lafuente R, Julio G C, Alaiz M, Vioque J, Guisan J M, Millan F. Enzym Microb Technol, 2007, 40: 1160

    37. [37]

      [37] Tee B L, Kaletunc G. Biotechnol Prog, 2009, 25: 436

    38. [38]

      [38] Porcelli M, Cacciapuoti G, Fusco S, Massa R, dAmbrosio G, Bertoldo C, DeRosa M, Zappia V. Fed Eur Biochem Soc Lett, 1997, 402: 102

    39. [39]

      [39] Deng L, Nie K L, Wang F, Tan T W. Chin J Chem Eng, 2005, 13: 529

    40. [40]

      [40] Ros P C M, Castro H F, Carvalho A K F, Soares C M F, Moraes F F, Zanin G M. J Ind Microbiol Biotechnol, 2012, 39: 529

    41. [41]

      [41] Rejasse B, Lamare S, Legoy M D, Besson T. Org Biomol Chem, 2004, 2: 1086

    42. [42]

      [42] Di X W, Li N, Zhang J. Adv Mat Res, 2012, 354: 133

    43. [43]

      [43] Li M, Chen D Y, Zhu X F. Chin J Catal (李明, 陈登宇, 朱锡锋. 催化学报), 2013, 34: 1674

  • 加载中
    1. [1]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    2. [2]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    3. [3]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    4. [4]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    5. [5]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    8. [8]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    9. [9]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    10. [10]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    11. [11]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    12. [12]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    13. [13]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    14. [14]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    15. [15]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    16. [16]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    17. [17]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    18. [18]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    19. [19]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    20. [20]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

Metrics
  • PDF Downloads(0)
  • Abstract views(328)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return