Citation: Abdol R. Hajipour, Ghobad Azizi. Immobilized Pd nanoparticles on Tris-modified SiO2:Synthesis, characterization, and catalytic activity in Heck cross-coupling reactions[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1547-1554. doi: 10.1016/S1872-2067(14)60109-1 shu

Immobilized Pd nanoparticles on Tris-modified SiO2:Synthesis, characterization, and catalytic activity in Heck cross-coupling reactions

  • Corresponding author: Abdol R. Hajipour, 
  • Received Date: 1 March 2014
    Available Online: 14 April 2014

  • The preparation of supported Pd nanoparticles on Tris (tris(hydroxymethyl)aminomethane)- modified SiO2 gel and their catalytic application in Heck coupling are investigated. The catalyst was characterized using a combination of X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. The supported Pd nanoparticles were found to be a highly active and reusable catalyst for the Heck reaction at a low Pd loading (0.02 mol%) because of stabilization by the Tris moieties. Several reaction parameters, including the type and amount of solvent, base, and temperature, were evaluated. The heterogeneity of the catalytic system was investigated using different approaches, and showed that slight Pd leaching into the reaction solution occurred under the reaction conditions. Despite this metal leaching, the catalyst can be reused seven times without significant loss of its activity.
  • 加载中
    1. [1]

      [1] Turner M, Golovko V B, Vaughan O P H, Abdulkin P, Berenguer- Murcia A, Tikhov M S, Johnson B F G, Lambert R M. Nature, 2008, 454: 981

    2. [2]

      [2] Astruc D, Lu F, Aranzaes J R. Angew Chem Int Ed, 2005, 44: 7852

    3. [3]

      [3] Beletskaya I P, Cheprakov A V. Chem Rev, 2000, 100: 3009

    4. [4]

      [4] de Vries J G. Can J Chem, 2001, 79: 1086

    5. [5]

      [5] Pirisedigh A, Zarei A, Seyedjamali H, Khazdooz L, Hajipour A R. Monatsh Chem, 2012, 143: 791

    6. [6]

      [6] Saha M, Pal A K. Tetrahedron Lett, 2011, 52: 4872

    7. [7]

      [7] Zarei A, Khazdooz L, Pirisedigh A, Hajipour A R, Seyedjamali H, Aghaei H. Tetrahedron Lett, 2011, 52: 4554

    8. [8]

      [8] Hajipour A R, Rafiee F. J Organomet Chem, 2011, 696: 2669

    9. [9]

      [9] Hajipour A R, Rafiee F. App Organomet Chem, 2011, 25: 542

    10. [10]

      [10] Karimi B, Enders D. Org Lett, 2006, 8: 1237

    11. [11]

      [11] Schönfelder D, Nuyken O, Weberskirch R. J Organomet Chem, 2005, 690: 4648

    12. [12]

      [12] Gruber-Woelfler H, Radaschitz P F, Feenstra P W, Haas W, Khinast J G. J Catal, 2012, 286: 30

    13. [13]

      [13] Polshettiwar V, Varma R S. Org Biomol Chem, 2009, 7: 37

    14. [14]

      [14] Polshettiwar V, Hesemann P, Moreau J J E. Tetrahedron, 2007, 63: 6784

    15. [15]

      [15] Uozumi Y, Kimura T. Synlett, 2002: 2045

    16. [16]

      [16] Bakherad M, Keivanloo A, Samangooei S. Chin. J. Catal (催化学报), 2014, 35: 324-328

    17. [17]

      [17] Chen G F, Wang F, Wang Y H, Zhang X C, Qin H Q, Zou H F, Xu J. Chin J Catal (催化学报), 2014, 35: 540

    18. [18]

      [18] Feng Y J, Li L, Li Y S, Zhao W R, Gu J L, Shi J L. J Mol Catal A, 2010, 322: 50

    19. [19]

      [19] Zhang F W, Jin J, Zhong X, Li S W, Niu J R, Li R, Ma J T. Green Chem, 2011, 13: 1238

    20. [20]

      [20] Yang X, Fei Z F, Zhao D, Ang W H, Li Y D, Dyson P J. Inorg Chem, 2008, 47: 3292

    21. [21]

      [21] Tao R T, Miao S D, Liu Z M, Xie Y, Han B X, An G M, Ding K L. Green Chem, 2009, 11: 96

    22. [22]

      [22] Senapati K K, Roy S, Borgohain C, Phukan P. J Mol Catal A, 2012, 352: 128

    23. [23]

      [23] Proch S, Mei Y, Villanueva J M R, Lu Y, Karpov A, Ballauff M, Kempe R. Adv Synth Catal, 2008, 350: 493

    24. [24]

      [24] Liu G, Hou M Q, Song J Y, Jiang T, Fan H L, Zhang Z F, Han B X. Green Chem, 2010, 12: 65

    25. [25]

      [25] Ko S, Jang J. Angew Chem Int Ed, 2006, 45: 7564

    26. [26]

      [26] Costa N J S, Kiyohara P K, Monteiro A L, Coppel Y, Philippot K, Rossi L M. J Catal, 2010, 276: 382

    27. [27]

      [27] Corma A, Iborra S, Llabrés i Xamena F X, Montón R, Calvino J J, Prestipino C. J Phys Chem C, 2010, 114: 8828

    28. [28]

      [28] Cirtiu C M, Dunlop-Briere A F, Moores A. Green Chem, 2011, 13: 288

    29. [29]

      [29] Boudjahem A-G, Mokrane T, Redjel A, Bettahar M M. C R Chim, 2010, 13: 1433

    30. [30]

      [30] Yang H Q, Han X J, Li G, Wang Y W. Green Chem, 2009, 11: 1184

    31. [31]

      [31] Polshettiwar V, Molnár Á. Tetrahedron, 2007, 63: 6949

    32. [32]

      [32] Richardson J M, Jones C W. J Catal, 2007, 251: 80

    33. [33]

      [30] Zhao F Y, Shirai M, Ikushima Y, Arai M. J Mol Catal A, 2002, 180: 211

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    3. [3]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    4. [4]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    9. [9]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    13. [13]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    14. [14]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    15. [15]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    16. [16]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    19. [19]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    20. [20]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

Metrics
  • PDF Downloads(0)
  • Abstract views(335)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return