Citation:
Katia Barbera, Leone Frusteri, Giuseppe Italiano, Lorenzo Spadaro, Francesco Frusteri, Siglinda Perathoner, Gabriele Centi. Low-temperature graphitization of amorphous carbon nanospheres[J]. Chinese Journal of Catalysis,
;2014, 35(6): 869-876.
doi:
10.1016/S1872-2067(14)60098-X
-
The investigation by SEM/TEM, porosity, and X-ray diffraction measurements of the graphitization process starting from amorphous carbon nanospheres, prepared by glucose carbonization, is reported. Aspects studied are the annealing temperature in the 750-1000℃ range, the type of inert carrier gas, and time of treatment in the 2-6 h range. It is investigated how these parameters influence the structural and morphological characteristics of the carbon materials obtained as well as their nanostructure. It is shown that it is possible to maintain after graphitization the round-shaped macro morphology, a high surface area and porosity, and especially a large structural disorder in the graphitic layers stacking, with the presence of rather small ordered domains. These are characteristics interesting for various catalytic applications. The key in obtaining these characteristics is the thermal treatment in a flow of N2. It was demonstrated that the use of He rather than N2 does not allow obtaining the same results. The effect is attributed to the presence of traces of oxygen, enough to create the presence of oxygen functional groups on the surface temperatures higher than 750℃, when graphitization occurs. These oxygen functional groups favor the graphitization process.
-
-
-
[1]
[1] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782
-
[2]
[2] Mleczko L, Lolli G. Angew Chem Int Ed, 2013, 52: 9372
-
[3]
[3] Vilatela J J, Eder D. ChemSusChem, 2012, 5: 456
-
[4]
[4] Su C, Loh K P. Acc Chem Res, 2013, 46: 2275
-
[5]
[5] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233
-
[6]
[6] Dreyer D R, Jia H P, Bielawski C W. Angew Chem Int Ed, 2010, 49: 6813
-
[7]
[7] Schaetz A, Zeltner M, Stark W J. ACS Catal, 2012, 2: 1267
-
[8]
[8] Su C, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Loh K P. Nat Commun, 2012, 3:1298
-
[9]
[9] Centi G, Perathoner S. Catal Today, 2010, 150: 151
-
[10]
[10] Centi G, Perathoner S. ChemSusChem, 2011, 4: 913
-
[11]
[11] Bitter J H. J Mater Chem, 2010, 20: 7312
-
[12]
[12] Su D S, Schlögl R. ChemSusChem, 2010, 3: 136
-
[13]
[13] Umeyama T, Imahori H. J Phys Chem C, 2013, 117: 3195
-
[14]
[14] Centi G, Perathoner S. Eur J Inorg Chem, 2009, 26: 3851
-
[15]
[15] Centi G, Perathoner S. Coord Chem Rev, 2011, 255: 1480
-
[16]
[16] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169
-
[17]
[17] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165
-
[18]
[18] Sun X Y, Wang R, Su D S. Chin J Catal (催化学报), 2013, 34: 508
-
[19]
[19] Yang Z, Nie H G, Chen X A, Chen X H, Huang S M. J Power Sources, 2013, 236: 238
-
[20]
[20] Zhang M, Dai L M. Nano Energy, 2012, 1: 514
-
[21]
[21] Zheng Y, Jiao Y, Jaroniec M, Jin Y G, Qiao S Z. Small, 2012, 8: 3550
-
[22]
[22] Powles R C, Marks N A, Lau D W M. Phys Rev B, 2009, 79: 075430
-
[23]
[23] Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322: 73
-
[24]
[24] Liu X, Frank B, Zhang W, Cotter T P, Schlögl R, Su D S. Angew Chem Int Ed, 2011, 50: 3318
-
[25]
[25] Frank B, Zhang J, Blume R, Schlögl R, Su D S. Angew Chem Int Ed, 2009, 48: 6913
-
[26]
[26] Frank B, Blume R, Rinaldi A, Trunschke A, Schlögl R. Angew Chem Int Ed, 2011, 50: 1
-
[27]
[27] Cotarca L, Eckert H. Phosgenations-A Handbook. Weinheim: Wiley-VCH, 2003
-
[28]
[28] Mitchell C J, van der Borden W, van der Velde K, Smit M, Scheringa R, Ahrika K, Jones D H. Catal Sci Technol, 2012, 2: 2109
-
[29]
[29] Volodina V A, Kozlovskii A A, Kuzina S I, Mikhailov A I. High Energy Chem, 2008, 42: 311
-
[30]
[30] Zhang Z L, Wang Y H, Tan Q Q, Li D, Chen Y F, Zhong Z Y, Su F B. Nanoscale, 2014, 6: 371
-
[31]
[31] Meng Q N, Zhang F F, Wang L M, Xiang S Y, Zhu S J, Zhang G Y, Zhang K, Yang B. RSC Adv, 2014, 4: 713
-
[32]
[32] Chang B B, Guan D X, Tian Y L, Yang Z C, Dong X P. J Hazard Mater, 2013, 262: 256
-
[33]
[33] He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. ACS Nano, 2013, 7: 10920
-
[34]
[34] Yu X L, Wang J G, Huang Z H, Shen W C, Kang F Y. Electrochem Commun, 2013, 36: 66
-
[35]
[35] Xiao J P, Yao M G, Zhu K, Zhang D, Zhao S J, Lu S C, Liu B, Cui W, Liu B B. Nanoscale, 2013, 5: 11306
-
[36]
[36] Chang B B, Tian Y L, Shi W W, Liu J Y, Xi F N, Dong X P. RSC Adv, 2013, 3: 20999
-
[37]
[37] You C H, Liao S J, Li H L, Hou S Y, Peng H L, Zeng X Y, Liu F F, Zheng R P, Fu Z Y, Li Y W. Carbon, 2014, 69: 294
-
[38]
[38] Song X H, Wang Y B, Wang K, Xu R. Ind Eng Chem Res, 2012, 51: 13438
-
[39]
[39] Zhai D Y, Du H D, Li B H, Zhu Y A, Kang F Y. Carbon, 2011, 49: 725
-
[40]
[40] Fuertes A B, Alvarez S. Carbon, 2004, 42: 3049
-
[41]
[41] Asaka K, Karita M, Saito Y. Appl Phys Lett, 2011, 99: 091907
-
[42]
[42] Sevilla M, Sanchis C, Valdes-Solis T, Morallon E, Fuertes A B. J Phys Chem C, 2007, 111: 9749
-
[43]
[43] Ramos A, Caméan I, Garcìa A B. Carbon, 2013, 59: 2
-
[44]
[44] Briston K J, Martin J M, Heau C, Martin M, Inkson B J. Nanotechnology, 2012, 23: 485602
-
[45]
[45] Sevilla M, Fuertes A B. Carbon, 2006, 44: 468
-
[46]
[46] Kasahara N, Shiraishi S, Oya A. Carbon, 2003, 41: 1654
-
[47]
[47] Frusteri L, Cannilla C, Barbera K, Perathoner S, Centi G, Frusteri F. Carbon, 2013, 59: 296
-
[48]
[48] Nieto-Marquez A, Espartera I, Lazo J C, Romero A, Valverde J L. Chem Eng J, 2009, 153: 211
-
[49]
[49] Genovese C, Ampelli C, Perathoner S, Centi G. J Energy Chem, 2013, 22: 202
-
[50]
[50] Su D S, Centi G. J Energy Chem, 2013, 22: 151
-
[51]
[51] Thommes M. Chem Ing Technol, 2010, 82: 1059
-
[52]
[52] Jiang J X, Su F B, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I. Angew Chem Int Ed, 2007, 46: 8574
-
[53]
[53] Antonov D, Häußermann T, Aird A, Roth J, Trebin H-R, Müller C, McGuiness L, Jelezko F, Yamamoto T, Isoya J, Pezzagna S, Meijer J, Wrachtrup J. Mater Sci, 2013, arXiv:1303.3730
-
[54]
[54] Norfolk C, Kaufmann A, Mukasyan A, Varma A. Carbon, 2006, 44: 301
-
[55]
[55] Ungar T, Gubicza J, Ribarik G, Pantea C, Zerda W. Carbon, 2002, 40: 929
-
[56]
[56] Biscoe J, Warren B E. J Appl Phys, 1942, 13: 364
-
[57]
[57] Hays D, Patrick J W, Walker A. Fuel, 1983, 62: 1079
-
[58]
[58] Aminzadeh A. Appl Spectroscopy, 1997, 51: 817
-
[59]
[59] Stair P C. Adv Catal, 2007, 51: 75
-
[60]
[60] Ferrari A C, Robertson J. Phys Rev B, 2000, 61: 14095
-
[61]
[61] Chu P K, Li L H. Mater Chem Phys, 2006, 96: 253
-
[62]
[62] Ferrari A C, Rodil S E, Robertson J. Phys Rev B, 2003, 67: 155306
-
[63]
[63] Tang Z H, Zhang L Q, Zeng C F, Lin T F, Guo B C. Soft Matter, 2012, 8: 921
-
[64]
[64] Yumitori S. J Mater Sci, 2000, 35: 139
-
[1]
-
-
-
[1]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[2]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[3]
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
-
[4]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[5]
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
-
[6]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[7]
Yue WANG , Zhizhi GU , Jingyi DONG , Jie ZHU , Cunguang LIU , Guohan LI , Meichen LU , Jian HAN , Shengnan CAO , Wei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423
-
[8]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[9]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[10]
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
-
[11]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[12]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[13]
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
-
[14]
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
-
[15]
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
-
[16]
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
-
[17]
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
-
[18]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[19]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[20]
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
-
[1]
Metrics
- PDF Downloads(197)
- Abstract views(569)
- HTML views(62)