Citation: Katia Barbera, Leone Frusteri, Giuseppe Italiano, Lorenzo Spadaro, Francesco Frusteri, Siglinda Perathoner, Gabriele Centi. Low-temperature graphitization of amorphous carbon nanospheres[J]. Chinese Journal of Catalysis, ;2014, 35(6): 869-876. doi: 10.1016/S1872-2067(14)60098-X shu

Low-temperature graphitization of amorphous carbon nanospheres

  • Corresponding author: Katia Barbera, 
  • Received Date: 20 March 2014
    Available Online: 9 April 2014

    Fund Project: This work was supported by EU project INCAS "Integration of Nanoreactor and multisite CAtalysis for a Sustainable chemical production" (Grant agreement no: 245988) (Grant agreement no: 245988)

  • The investigation by SEM/TEM, porosity, and X-ray diffraction measurements of the graphitization process starting from amorphous carbon nanospheres, prepared by glucose carbonization, is reported. Aspects studied are the annealing temperature in the 750-1000℃ range, the type of inert carrier gas, and time of treatment in the 2-6 h range. It is investigated how these parameters influence the structural and morphological characteristics of the carbon materials obtained as well as their nanostructure. It is shown that it is possible to maintain after graphitization the round-shaped macro morphology, a high surface area and porosity, and especially a large structural disorder in the graphitic layers stacking, with the presence of rather small ordered domains. These are characteristics interesting for various catalytic applications. The key in obtaining these characteristics is the thermal treatment in a flow of N2. It was demonstrated that the use of He rather than N2 does not allow obtaining the same results. The effect is attributed to the presence of traces of oxygen, enough to create the presence of oxygen functional groups on the surface temperatures higher than 750℃, when graphitization occurs. These oxygen functional groups favor the graphitization process.
  • 加载中
    1. [1]

      [1] Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782

    2. [2]

      [2] Mleczko L, Lolli G. Angew Chem Int Ed, 2013, 52: 9372

    3. [3]

      [3] Vilatela J J, Eder D. ChemSusChem, 2012, 5: 456

    4. [4]

      [4] Su C, Loh K P. Acc Chem Res, 2013, 46: 2275

    5. [5]

      [5] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233

    6. [6]

      [6] Dreyer D R, Jia H P, Bielawski C W. Angew Chem Int Ed, 2010, 49: 6813

    7. [7]

      [7] Schaetz A, Zeltner M, Stark W J. ACS Catal, 2012, 2: 1267

    8. [8]

      [8] Su C, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Loh K P. Nat Commun, 2012, 3:1298

    9. [9]

      [9] Centi G, Perathoner S. Catal Today, 2010, 150: 151

    10. [10]

      [10] Centi G, Perathoner S. ChemSusChem, 2011, 4: 913

    11. [11]

      [11] Bitter J H. J Mater Chem, 2010, 20: 7312

    12. [12]

      [12] Su D S, Schlögl R. ChemSusChem, 2010, 3: 136

    13. [13]

      [13] Umeyama T, Imahori H. J Phys Chem C, 2013, 117: 3195

    14. [14]

      [14] Centi G, Perathoner S. Eur J Inorg Chem, 2009, 26: 3851

    15. [15]

      [15] Centi G, Perathoner S. Coord Chem Rev, 2011, 255: 1480

    16. [16]

      [16] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169

    17. [17]

      [17] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165

    18. [18]

      [18] Sun X Y, Wang R, Su D S. Chin J Catal (催化学报), 2013, 34: 508

    19. [19]

      [19] Yang Z, Nie H G, Chen X A, Chen X H, Huang S M. J Power Sources, 2013, 236: 238

    20. [20]

      [20] Zhang M, Dai L M. Nano Energy, 2012, 1: 514

    21. [21]

      [21] Zheng Y, Jiao Y, Jaroniec M, Jin Y G, Qiao S Z. Small, 2012, 8: 3550

    22. [22]

      [22] Powles R C, Marks N A, Lau D W M. Phys Rev B, 2009, 79: 075430

    23. [23]

      [23] Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322: 73

    24. [24]

      [24] Liu X, Frank B, Zhang W, Cotter T P, Schlögl R, Su D S. Angew Chem Int Ed, 2011, 50: 3318

    25. [25]

      [25] Frank B, Zhang J, Blume R, Schlögl R, Su D S. Angew Chem Int Ed, 2009, 48: 6913

    26. [26]

      [26] Frank B, Blume R, Rinaldi A, Trunschke A, Schlögl R. Angew Chem Int Ed, 2011, 50: 1

    27. [27]

      [27] Cotarca L, Eckert H. Phosgenations-A Handbook. Weinheim: Wiley-VCH, 2003

    28. [28]

      [28] Mitchell C J, van der Borden W, van der Velde K, Smit M, Scheringa R, Ahrika K, Jones D H. Catal Sci Technol, 2012, 2: 2109

    29. [29]

      [29] Volodina V A, Kozlovskii A A, Kuzina S I, Mikhailov A I. High Energy Chem, 2008, 42: 311

    30. [30]

      [30] Zhang Z L, Wang Y H, Tan Q Q, Li D, Chen Y F, Zhong Z Y, Su F B. Nanoscale, 2014, 6: 371

    31. [31]

      [31] Meng Q N, Zhang F F, Wang L M, Xiang S Y, Zhu S J, Zhang G Y, Zhang K, Yang B. RSC Adv, 2014, 4: 713

    32. [32]

      [32] Chang B B, Guan D X, Tian Y L, Yang Z C, Dong X P. J Hazard Mater, 2013, 262: 256

    33. [33]

      [33] He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. ACS Nano, 2013, 7: 10920

    34. [34]

      [34] Yu X L, Wang J G, Huang Z H, Shen W C, Kang F Y. Electrochem Commun, 2013, 36: 66

    35. [35]

      [35] Xiao J P, Yao M G, Zhu K, Zhang D, Zhao S J, Lu S C, Liu B, Cui W, Liu B B. Nanoscale, 2013, 5: 11306

    36. [36]

      [36] Chang B B, Tian Y L, Shi W W, Liu J Y, Xi F N, Dong X P. RSC Adv, 2013, 3: 20999

    37. [37]

      [37] You C H, Liao S J, Li H L, Hou S Y, Peng H L, Zeng X Y, Liu F F, Zheng R P, Fu Z Y, Li Y W. Carbon, 2014, 69: 294

    38. [38]

      [38] Song X H, Wang Y B, Wang K, Xu R. Ind Eng Chem Res, 2012, 51: 13438

    39. [39]

      [39] Zhai D Y, Du H D, Li B H, Zhu Y A, Kang F Y. Carbon, 2011, 49: 725

    40. [40]

      [40] Fuertes A B, Alvarez S. Carbon, 2004, 42: 3049

    41. [41]

      [41] Asaka K, Karita M, Saito Y. Appl Phys Lett, 2011, 99: 091907

    42. [42]

      [42] Sevilla M, Sanchis C, Valdes-Solis T, Morallon E, Fuertes A B. J Phys Chem C, 2007, 111: 9749

    43. [43]

      [43] Ramos A, Caméan I, Garcìa A B. Carbon, 2013, 59: 2

    44. [44]

      [44] Briston K J, Martin J M, Heau C, Martin M, Inkson B J. Nanotechnology, 2012, 23: 485602

    45. [45]

      [45] Sevilla M, Fuertes A B. Carbon, 2006, 44: 468

    46. [46]

      [46] Kasahara N, Shiraishi S, Oya A. Carbon, 2003, 41: 1654

    47. [47]

      [47] Frusteri L, Cannilla C, Barbera K, Perathoner S, Centi G, Frusteri F. Carbon, 2013, 59: 296

    48. [48]

      [48] Nieto-Marquez A, Espartera I, Lazo J C, Romero A, Valverde J L. Chem Eng J, 2009, 153: 211

    49. [49]

      [49] Genovese C, Ampelli C, Perathoner S, Centi G. J Energy Chem, 2013, 22: 202

    50. [50]

      [50] Su D S, Centi G. J Energy Chem, 2013, 22: 151

    51. [51]

      [51] Thommes M. Chem Ing Technol, 2010, 82: 1059

    52. [52]

      [52] Jiang J X, Su F B, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I. Angew Chem Int Ed, 2007, 46: 8574

    53. [53]

      [53] Antonov D, Häußermann T, Aird A, Roth J, Trebin H-R, Müller C, McGuiness L, Jelezko F, Yamamoto T, Isoya J, Pezzagna S, Meijer J, Wrachtrup J. Mater Sci, 2013, arXiv:1303.3730

    54. [54]

      [54] Norfolk C, Kaufmann A, Mukasyan A, Varma A. Carbon, 2006, 44: 301

    55. [55]

      [55] Ungar T, Gubicza J, Ribarik G, Pantea C, Zerda W. Carbon, 2002, 40: 929

    56. [56]

      [56] Biscoe J, Warren B E. J Appl Phys, 1942, 13: 364

    57. [57]

      [57] Hays D, Patrick J W, Walker A. Fuel, 1983, 62: 1079

    58. [58]

      [58] Aminzadeh A. Appl Spectroscopy, 1997, 51: 817

    59. [59]

      [59] Stair P C. Adv Catal, 2007, 51: 75

    60. [60]

      [60] Ferrari A C, Robertson J. Phys Rev B, 2000, 61: 14095

    61. [61]

      [61] Chu P K, Li L H. Mater Chem Phys, 2006, 96: 253

    62. [62]

      [62] Ferrari A C, Rodil S E, Robertson J. Phys Rev B, 2003, 67: 155306

    63. [63]

      [63] Tang Z H, Zhang L Q, Zeng C F, Lin T F, Guo B C. Soft Matter, 2012, 8: 921

    64. [64]

      [64] Yumitori S. J Mater Sci, 2000, 35: 139

  • 加载中
    1. [1]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    6. [6]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    7. [7]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    8. [8]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    9. [9]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    10. [10]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    11. [11]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    12. [12]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    13. [13]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    14. [14]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    15. [15]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    16. [16]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    17. [17]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    18. [18]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    19. [19]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    20. [20]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

Metrics
  • PDF Downloads(197)
  • Abstract views(569)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return