Citation: Huimin Liu, Yuming Li, Hao Wu, Weiwei Yang, Dehua He. Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1520-1528. doi: 10.1016/S1872-2067(14)60095-4 shu

Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4

  • Corresponding author: Dehua He, 
  • Received Date: 14 February 2014
    Available Online: 25 March 2014

    Fund Project:

  • Rare-earth metal (Nd, Ce, and La) oxides modified Ni/SBA-15 catalysts were prepared by a β-cyclodextrin-modified impregnation method. The physicochemical properties of the catalysts were characterized using X-ray diffraction, N2 adsorption-desorption, temperature-programmed reduction, and thermogravimetric analysis. The catalytic performance of the catalysts was evaluated in the CO2 reforming of CH4 to syngas. The characterization results showed that Nd, Ce, and La modification had little effect on the textural structures and crystalline phases of the obtained catalysts but influenced the reduction of NiO species. Addition of Nd favored interactions between Ni and SiO2, possibly as a result of the formation of Ni-Nd-O species. The results for the CO2 reforming of CH4 revealed that the addition of suitable amounts of Nd (5-10 wt%) improved the catalytic activity and stability. A small amount of carbon was deposited over the used Nd-modified catalysts. The properties of Ni/SBA-15 catalysts modified with La and Ce were similar to those of the Nd-modified catalysts.
  • 加载中
    1. [1]

      [1] Choudhary V R, Mondal K C, Mamman A S, Joshi U A. Catal Lett, 2005, 100: 271

    2. [2]

      [2] Zhang M L, Ji S F, Hu L H, Yin F X, Li C Y, Liu H. Chin J Catal (张美丽, 季生福, 胡林华, 银凤翔, 李成岳, 刘辉. 催化学报), 2006, 27: 777

    3. [3]

      [3] Sutthiumporn K, Kawi S. Int J Hydrogen Energy, 2011, 36:14435

    4. [4]

      [4] Natesakhawat S, Watson R B, Wang X Q, Ozkan U S. J Catal, 2005, 2: 496

    5. [5]

      [5] Pereniguez R, Gonzalez-Delacruz V M, Holgado J P, Cabollero A. Appl Catal B, 2010, 93: 346

    6. [6]

      [6] Serrano-Lotina A, Martin A J, Folgado M A, Daza L. Int J Hydrogen Energy, 2012, 37: 12342

    7. [7]

      [7] Hally W, Bitter J H, Seshan K, Lerchert J A, Ross J R H. Stud Surf Sci Catal, 1994, 88: 167

    8. [8]

      [8] Yuan C Y, Wei Y X, Li J Z, Xu S T, Chen J R, Zhou Y, Wang Q Y, Xu L, Liu Z M. Chin J Catal (袁翠峪, 魏迎旭, 李金哲, 徐舒涛, 陈景润, 周游, 王全义, 许磊, 刘中民. 催化学报), 2012, 33: 367

    9. [9]

      [9] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108: 177

    10. [10]

      [10] Nandini A, Pant K K, Dhingra S C. Appl Catal A, 2005, 290: 166

    11. [11]

      [11] Barroso-Quiroga M M, Castro-Luna A E. Int J Hydrogen Energy, 2010, 35: 6052

    12. [12]

      [12] Ocsachoque M, Bengoa J, Gazzoli D, Gonzalez M G. Catal Lett, 2011, 141: 1643

    13. [13]

      [13] Daza C E, Cabrera C R, Moreno S, Molina R. Appl Catal A, 2010, 378: 125

    14. [14]

      [14] Zhu J Q, Peng X X, Yao L, Shen J, Tong D, Hu C. Int J Hydrogen Energy, 2011, 36: 7094

    15. [15]

      [15] Ikeguchi M, Mimura T, Sekine Y, Kikuchi E, Matsukata M. Appl Catal A, 2005, 290: 212

    16. [16]

      [16] Guo J Z, Hou Z Y, Gao J, Zheng X M. Fuel, 2008, 87: 1348

    17. [17]

      [17] Guo J Z, Hou Z Y, Zheng X M. React Kinet Mech Catal, 2010, 101: 129

    18. [18]

      [18] Liu H M, Li Y M, Wu H, Takayama H, Miyake T, He D H. Catal Commun, 2012, 28: 168

    19. [19]

      [19] Zhou W, He D H. Green Chem, 2009,11: 1146

    20. [20]

      [20] Xu L H, Mi W L, Su Q Q. J Nat Gas Chem, 2011, 20: 287

    21. [21]

      [21] Zhang S H, Muratsugu S, Ishiguro N, Tada M. ACS Catal, 2013, 3: 1855

    22. [22]

      [22] Yamazaki O, Nozaki T, Omatak Y K, Fujimoto K. Chem Lett, 1992: 1953

    23. [23]

      [23] Wang S, Lu G Q. J Chem Technol Biotechnol, 2000, 75: 589

    24. [24]

      [24] Slagtern A, Olsbye U, Blom R, Dahl I M, Fjellvag H. Appl Catal A, 1997, 165: 379

    25. [25]

      [25] Li X, Li S, Yang Y, Wu M, He F. Catal Lett, 2007, 118: 59

    26. [26]

      [26] Liu B S, Au C T. Appl Catal A, 2003, 244: 181

    27. [27]

      [27] Wang N, Chu W, Zhang T, Zhao X S. Int J Hydrogen Energy, 2012, 37: 19

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(0)
  • Abstract views(380)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return