Citation: Suning Wang, Yajuan Cui, Li Lan, Zhonghua Shi, Ming Zhao, Maochu Gong, Ruimei Fang, Sijie Chen, Yaoqiang Chen. A new monolithic Pt-Pd-Rh motorcycle exhaust catalyst to meet future emission standards[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1482-1491. doi: 10.1016/S1872-2067(14)60092-9 shu

A new monolithic Pt-Pd-Rh motorcycle exhaust catalyst to meet future emission standards

  • Corresponding author: Yaoqiang Chen, 
  • Received Date: 26 January 2014
    Available Online: 21 March 2014

    Fund Project:

  • A new composite oxide material as support, CeO2-ZrO2-La2O3-PrO2-Al2O3, was synthesized by a co-precipitation method. Pd-Rh, Pt-Rh, and Pt-Pd-Rh supported on monolithic carrier catalysts were obtained by an impregnation route. The textural, structural, and reductive properties of the catalysts were characterized by N2 adsorption-desorption, temperature-programmed reduction, oxygen storage capacity measurements, and X-ray diffraction. The air-fuel-ratio (A/F), space velocity (SV), and temperature characteristics of the fresh and aged catalysts were investigated on a systematic basis. The results showed that among the three catalysts, Pt-Pd-Rh displayed the best performance. For an SV of 40000 h-1 in the case of fresh Pt-Pd-Rh, the light-off temperatures (T50) for C3H8, CO, and NO were 239, 187, and 191 ℃, respectively, with corresponding ΔT (T90-T50) values of 21, 3, and 3 ℃, respectively. After aging, the T50 for C3H8, CO, and NO were 298, 203, and 223 ℃, respectively, and the ΔT values were 22, 5, and 13 ℃, respectively. Moreover, the window widths for the A/F in the case of fresh and aged Pt-Pd-Rh catalysts were wide. Overall, the excellent performance for the Pt-Pd-Rh catalyst makes it suitable as a motorcycle exhaust catalyst, which can meet future emission standards.
  • 加载中
    1. [1]

      [1] Xin Q, Lin L W. Chin J Catal (辛勤, 林励吾. 催化学报), 2013, 34: 401

    2. [2]

      [2] China Vehicle Emission Control Annual Report. Ministry of Environmental Protection of the People's Republic of China. Beijing (中国机动车污染防治年报. 中华人民共和国环境保护部. 北京), 2012

    3. [3]

      [3] Twigg M V. Appl Catal B, 2007, 70: 2

    4. [4]

      [4] Johnson T. SAE Int J Engines, 2013, 6: 699

    5. [5]

      [5] Hu C M, Zhao M, Wang H R, Chen S H, Gong M C, Shi Z H, Chen Y Q. Chin J Catal (胡春明, 赵明, 王海蓉, 陈山虎, 龚茂初, 史忠华, 陈耀强. 催化学报), 2008, 29: 677

    6. [6]

      [6] Yan F W, Xia X K, Zou B, Hou X J. J Wuhan Univ Technol (Information Manag Eng) (颜伏伍, 夏晓坤, 邹斌, 侯献军. 武汉理工大学学报(信息与管理工程版)), 2009, 31: 429

    7. [7]

      [7] Trade Reports. Committee of Motor Vehicle Pollution Prevention and Control, CAEPI. Beijing (行业综述. 中国环境保护产业协会机动车污染防治委员会. 北京), 2010. 38

    8. [8]

      [8] Zhang Z Q, Huan Y F, He X K, Zhao Y K. Precious Metals (张振强, 桓源峰, 贺小昆, 赵云昆. 贵金属), 2008, 29: 59

    9. [9]

      [9] Zhang H P, Liu H C. J Energy Chem, 2013, 22: 98

    10. [10]

      [10] Sheng Y Q, Zhou Y, Lu H F, Zhang Z K, Chen Y F. Chin J Catal (盛叶琴, 周瑛, 卢晗锋, 张泽凯, 陈银飞. 催化学报), 2013, 34: 567

    11. [11]

      [11] Daturi M, Finocchio E, Binet C, Lavalley J C, Fally F, Perrichon V, Vidal H, Hickey N, Kaspar J. J Phys Chem B, 2000, 104: 9186

    12. [12]

      [12] Rainer D R, Koranne M, Vesecky S M, Goodman D W. J Phys Chem B, 1997, 101: 10769

    13. [13]

      [13] Shang H Y, Wang Y, Gong M C, Chen Y Q. J Nat Gas Chem, 2012, 21: 393

    14. [14]

      [14] Morikawa A, Suzuki T, Kanazawa T, Kikuta K, Suda A, Shinjo H. Appl Catal B, 2008, 78: 210

    15. [15]

      [15] Wang B, Wu X D, Ran R, Si Z C, Weng D. Sci Sin Chim (王斌, 吴晓东, 冉锐, 司知蠢, 翁端. 中国科学化学), 2012, 42: 1315

    16. [16]

      [16] Anatoly B I, Nunan J G. US Patent 6387338. 2002

    17. [17]

      [17] Wang Q Y, Li G F, Zhao B, Zhou R X. Fuel, 2011, 90: 3047

    18. [18]

      [18] Cui Y J, He S N, Fang R M, Shi Z H, Gong M C, Chen Y Q. Chin J Catal (崔亚娟, 何胜楠, 方瑞梅, 史忠华, 龚茂初, 陈耀强. 催化学报), 2012, 33: 1020

    19. [19]

      [19] Nagai Y, Hirabayashi T, Dohmae K, Takagi N, Minami T, Shinjoh H, Matsumoto S. J Catal, 2006, 242: 103

    20. [20]

      [20] Wang G, You R, Meng M. Fuel, 2013, 103: 799

    21. [21]

      [21] Fang R M, He S N, Cui Y J, Shi Z H, Gong M C, Chen Y Q. Chin J Catal (方瑞梅, 何胜楠, 崔亚娟, 史忠华, 龚茂初, 陈耀强. 催化学报), 2012, 33: 1014

    22. [22]

      [22] Wang Q Y, Li G F, Zhao B, Zhou R X. Appl Catal B, 2010, 100: 516

    23. [23]

      [23] Leofanti G, Padovan M, Tozzola G, Venturell B. Catal Today, 1998, 41: 207

    24. [24]

      [24] Mattos L V, de Oliveira E R, Resende P D, Noronha F B, Passos F B. Catal Today, 2002, 77: 245

    25. [25]

      [25] Cai L, Zhao M, Pi Z, Gong M C, Chen Y Q. Chin J Catal (蔡黎, 赵明, 皮展, 龚茂初, 陈耀强. 催化学报), 2008, 29: 108

    26. [26]

      [26] Mattos L V, Noronha F B. J Power Sources, 2005, 145: 10

    27. [27]

      [27] Guo J X, Shi Z H, Wu D D, Yin H Q, Gong M C, Chen Y Q. Appl Surf Sci, 2013, 273: 527

    28. [28]

      [28] Jenog J W, Choi B C. JSME Int J, Ser B, 2002, 45: 392

    29. [29]

      [29] Huang P, Jiang H X, Zhang M H. J Rare Earths, 2012, 30: 524

    30. [30]

      [30] Weng X L, Perston B, Wang X Z, Abrahams I, Lin T, Yang S F, Evans J R G, Morgan D J, Carley A F, Bowker M, Knowles J C, Rehman I, Darr J A. Appl Catal B, 2009, 90: 405

    31. [31]

      [31] Chuang C C, Hsiang H I, Hwang J S, Wang T S. J Alloys Compd, 2009, 470: 387

    32. [32]

      [32] Fernandes D M, Scofield C F, Neto A A, Cardoso M J B, Zotin F M Z. Chem Eng J, 2010, 160: 85

    33. [33]

      [33] Zotin F M Z, da Fonseca Martins Gomes O, de Oliveira C H, Neto A A, Cardoso M J B. Catal Today, 2005, 107-108: 157

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(371)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return