Citation: Bumei Zheng, Yufeng Wan, Weiya Yang, Fengxiang Ling, Hong Xie, Xiangchen Fang, Hongchen Guo. Mechanism of seeding in hydrothermal synthesis of zeolite Beta with organic structure-directing agent-free gel[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1800-1810. doi: 10.1016/S1872-2067(14)60089-9 shu

Mechanism of seeding in hydrothermal synthesis of zeolite Beta with organic structure-directing agent-free gel

  • Corresponding author: Hongchen Guo, 
  • Received Date: 1 March 2014
    Available Online: 21 March 2014

  • The organic structure-directing agent-free synthesis of zeolite Beta was carried out using several zeolite Beta seeds that differed in SiO2/Al2O3 ratio and crystal size. The synthesis was studied using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, transmission electron microscopy, ultraviolet-Raman spectroscopy, infrared spectroscopy, and N2 physisorption. Synthesis was successful using different zeolite Beta seeds including pure silica seeds. During the induction period, the seeds underwent dissolution. The SiO2/Al2O3 ratio and crystal size, pretreatment (calcination), and seed addition time had a significant influence on seed dissolution behavior, crystallization process, and product. Morphological studies revealed that the seed residues produced by dissolution (except for pure silica) resulted in the formation of "immobilized" surface nuclei, which allowed for the dense growth of fresh small zeolite Beta crystals. The dissolved small seed fragments yielded dispersed nuclei, which formed relatively scattered small zeolite Beta crystals thought to be the main nuclei source of the pure silica seed. It is suggested that the use of an appropriately high SiO2/Al2O3 ratio, small size, and precalcined zeolite Beta seed is helpful for the synthesis of highly crystalline and pure zeolite Beta from the organic structure-directing agent-free gel.
  • 加载中
    1. [1]

      [1] Newsam J M, Treacy M M J, Koetsier W T, De Gruyter C B. Proc R Soc Lond A, 1988, 420: 375

    2. [2]

      [2] Higgins J B, LaPierre R B, Schlenker J L, Rohrman A C, Wood J D, Kerr G T, Rohrbaugh W J. Zeolites, 1988, 8: 446

    3. [3]

      [3] Varanasi S R, Kumar P, Puranik V R, Umarji A, Yashonath S. Microporous Mesoporous Mater, 2009, 125: 135

    4. [4]

      [4] Nur H, Ramli Z, Efendi J, Rahman A N A, Chandren S, Yuan L S. Catal Commun, 2011, 12: 822

    5. [5]

      [5] Wu Y H, Tian F P, Liu J, Song D, Jia C Y, Chen Y Y. Microporous Mesoporous Mater, 2012, 162: 168

    6. [6]

      [6] Batalha N, Morisset S, Pinard L, Maupin I, Lemberton J L, Lemos F, Pouilloux Y. Microporous Mesoporous Mater, 2013, 166: 161

    7. [7]

      [7] Horáček J, Šťávová G, Kelbichová V, Kubička D. Catal Today, 2013, 204: 38

    8. [8]

      [8] Mihályi R M, Lónyi F, Beyer H K, Szegedi Á, Kollár M, Pál-Borbély G, Valyon J. J Mol Catal A, 2013, 367: 77

    9. [9]

      [9] Mu X H, Wang D Z, Wang Y R, Lin M, Cheng S B, Shu X T. Chin J Catal (慕旭宏, 王殿中, 王永睿, 林民, 程时标, 舒兴田. 催化学报), 2013, 34: 69

    10. [10]

      [10] Wadlinger R L, Kerr G T, Rosinski E J. US Patent 3 308 069. 1967

    11. [11]

      [11] Caullet P, Hazm J, Guth J L, Joly J F, Lynch J, Raatz F. Zeolites, 1992, 12: 240

    12. [12]

      [12] Eapen M J, Reddy K S N, Shiralkar V P. Zeolites, 1994, 14: 295

    13. [13]

      [13] Mostowicz R, Testa F, Crea F, Aiello R, Fonseca A, Nagy J B. Zeolites, 1997, 18: 308

    14. [14]

      [14] Qi X L, Liu X Y, Lin B X. Chin J Catal (祁晓岚, 刘希尧, 林炳雄. 催化学报), 2000, 21: 75

    15. [15]

      [15] Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Chem Mater, 2008, 20: 4533

    16. [16]

      [16] Majano G, Delmotte L, Valtchev V, Mintova S. Chem Mater, 2009, 21: 4184

    17. [17]

      [17] Kamimura Y, Chaikittisilp W, Itabashi K, Shimojima A, Okubo T. Chem Asian J, 2010, 5: 2182

    18. [18]

      [18] Kamimura Y, Tanahashi S, Itabashi K, Sugawara A, Wakihara T, Shimojima A, Okubo T. J Phys Chem C, 2011, 115: 744

    19. [19]

      [19] Xie B, Zhang H Y, Yang C G, Liu S Y, Ren L M, Zhang L, Meng X J, Yilmaz B, Müller U, Xiao F S. Chem Commun, 2011, 47: 3945

    20. [20]

      [20] Zhang H Y, Xie B, Meng X J, Müller U, Yilmaz B, Feyen M, Maurer S, Gies H, Tatsumi T, Bao X H, Zhang W P, Vos D D, Xiao F S. Microporous Mesoporous Mater, 2013, 180: 123

    21. [21]

      [21] Iyoki K, Itabashi K, Okubo T. Chem Asian J, 2013, 8: 1419

    22. [22]

      [22] Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. J Am Chem Soc, 2012, 134: 11542

    23. [23]

      [23] Iyoki K, Itabashi K, Okubo T. Microporous Mesoporous Mater, 2014, 189: 22

    24. [24]

      [24] Cundy C S, Cox P A. Microporous Mesoporous Mater, 2005, 82: 1

    25. [25]

      [25] Camblor M A, Corma A, Valencia S. Microporous Mesoporous Mater, 1998, 25: 59

    26. [26]

      [26] Xu R R, Pang W Q. Chemistry: Zeolites and Porous Materials. Beijing: Science Press (徐如人, 庞文琴. 分子筛与多孔材料化学. 北京: 科学出版社), 2004. 130

    27. [27]

      [27] Kiricsi I, Flego C, Pazzuconi G, Parker W O Jr, Millini R, Perego C, Bellussi G. J Phys Chem, 1994, 98: 4627

    28. [28]

      [28] Blasco T, Camblor M A, Corma A, Esteve P, Guil J M, Martínez A, Perdigón-Melón J A, Valencia S. J Phys Chem B, 1998, 102: 75

    29. [29]

      [29] Tosheva L, Mihailova B, Valtchev V, Sterte J. Microporous Mesoporous Mater, 2001, 48: 31

    30. [30]

      [30] Mihailova B, Valtchev V, Mintova S, Faust A C, Petkov N, Bein T. Phys Chem Chem Phys, 2005, 7: 2756

    31. [31]

      [31] Majano G, Mintova S, Ovsitser O, Mihailova B, Bein T. Microporous Mesoporous Mater, 2005, 80: 227

  • 加载中
    1. [1]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    7. [7]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    14. [14]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    15. [15]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(0)
  • Abstract views(295)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return