Citation: Xiaoyan Shi, Yunbo Yu, Li Xue, Hong He. Effect of sulfur poisoning on Co3O4/CeO2 composite oxide catalyst for soot combustion[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1504-1510. doi: 10.1016/S1872-2067(14)60088-7 shu

Effect of sulfur poisoning on Co3O4/CeO2 composite oxide catalyst for soot combustion

  • Corresponding author: Hong He, 
  • Received Date: 23 February 2014
    Available Online: 21 March 2014

    Fund Project:

  • CeO2, Co3O4, and a series of Co3O4/CeO2 composite oxides prepared by co-precipitation were exposed to SO2 under an oxidizing environment at 400 ℃. These fresh and SO2-poisoned samples were characterized by in situ diffuse reflectance infrared Fourier transform spectroscopy, X-ray diffraction, temperature-programmed desorption, and X-ray photoelectron spectroscopy. Sulfates were formed on the oxides, with more sulfates on CeO2 than on Co3O4. On the Co3O4/CeO2 composite oxides, both cobalt sulphate and ceria sulfate were formed. Fresh and sulfated samples were tested for soot combustion in a NO/O2 gas flow. The Co3O4/CeO2 composite oxides showed better SO2 tolerance and higher activity than CeO2 but were more easily poisoned by SO2 than Co3O4.
  • 加载中
    1. [1]

      [1] Neeft J P A, Makkee M, Moulijn J A. Appl Catal B, 1996, 8: 57

    2. [2]

      [2] Liu J, Zhao Z, Xu C M. Chin J Catal (刘坚, 赵震, 徐春明. 催化学报), 2004, 25: 673

    3. [3]

      [3] van Setten B A A L, Makkee M, Moulijn J A. Catal Rev-Sci Eng, 2001, 43: 489

    4. [4]

      [4] Setiabudi A, Chen J L, Mul G, Makkee M, Moulijn J A. Appl Catal B, 2004, 51: 9

    5. [5]

      [5] Weng D, Li J, Wu X D, Lin F. Catal Commun, 2008, 9: 1898

    6. [6]

      [6] Harrison P G, Ball I K, Daniell W, Lukinskas P, Céspedes M, Miró E E, Ulla M A. Chem Eng J, 2003, 95: 47

    7. [7]

      [7] Dhakad M, Mitshuhashi T, Rayalu S, Doggali P, Bakardjiva S, Subrt J, Fino D, Haneda H, Labhsetwar N. Catal Today, 2008, 132: 188

    8. [8]

      [8] Liu J, Zhao Z, Wang J Q, Xu C M, Duan A J, Jiang G Y, Yang Q. Appl Catal B, 2008, 84: 185

    9. [9]

      [9] Sheng Y Q, Zhou Y, Lu H F, Zhang Z K, Chen Y F. Chin J Catal (盛叶琴, 周瑛, 卢晗锋, 张泽凯, 陈银飞. 催化学报), 2013, 34: 567

    10. [10]

      [10] Bueno-López A. Appl Catal B, 2014, 146: 1

    11. [11]

      [11] Shan W J, Yang L H, Ma N, Yang J L. Chin J Catal (单文娟, 杨利花, 马娜, 杨佳丽. 催化学报), 2012, 33: 970

    12. [12]

      [12] Aneggi E, Divins N J, de Leitenburg C, Llorca J, Trovarelli A. J Catal, 2014, 312: 191

    13. [13]

      [13] Liotta L F, Di Carlo G, Pantaleo G, Venezia A M, Deganello G. Appl Catal B, 2006, 66: 217

    14. [14]

      [14] Kang M, Song M W, Lee C H. Appl Catal B, 2003, 251: 143

    15. [15]

      [15] van Setten B A A L, Schouten J M, Makkee M, Moulijn J A. Appl Catal B, 2000, 28: 253

    16. [16]

      [16] Teraoka Y, Nakano K, Kagawa S, Shangguan W F. Appl Catal B, 1995, 5: L181

    17. [17]

      [17] Fino D, Russo N, Saracco G, Specchia V. J Catal, 2003, 217: 367

    18. [18]

      [18] Luo T, Vohs J M, Gorte R J. J Catal, 2002, 210: 397

    19. [19]

      [19] Smirnov M Yu, Kalinkin A V, Pashis A V, Sorokin A M, Noskov A S, Kharas K C, Bukhtiyarov V I. J Phys Chem B, 2005, 109: 11712

    20. [20]

      [20] Teterin Yu A, Teterin A Yu, Lebedev A M, Utkin I O. J Electron Spec Related Pheno, 1998, 88-91: 275

    21. [21]

      [21] Liotta L F, Carlo G, Pantaleo G, Venezia A M, Deganello G. Top Catal, 2009, 52: 1989

    22. [22]

      [22] Goodman A L, P Li Usher C R, Grassian V H. J Phys Chem A, 2001, 105: 6109

    23. [23]

      [23] Luo T, Gorte R J. Appl Catal B, 2004, 53: 77

    24. [24]

      [24] Waqif M, Bazin P, Saur O, Lavalley J C, Blanchard G, Touret O. Appl Catal B, 1997, 11: 193

    25. [25]

      [25] Mul G, Kapteijn F, Doornkamp C, Moulijn J A. J Catal, 1998, 179: 258

    26. [26]

      [26] Peralta M A, Milt V G, Cornaglia L M, Querini C A. J Catal, 2006, 242: 118

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(0)
  • Abstract views(287)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return