Citation:
Zili Wu. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts:Structure identification and quantification[J]. Chinese Journal of Catalysis,
;2014, 35(10): 1591-1608.
doi:
10.1016/S1872-2067(14)60082-6
-
Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure-catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In this review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. The qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.
-
Keywords:
- Multi-wavelength,
- Raman spectroscopy,
- Resonance Raman,
- Vanadia,
- Silica,
- Ceria
-
-
-
[1]
[1] Banares M A, Wach I E. J Raman Spectr, 2002, 33: 359
-
[2]
[2] Wachs I E, Roberts C A. Chem Soc Rev, 2010, 39: 5002
-
[3]
[3] Banares M A, Mestl G. Adv Catal, 2009, 52: 43
-
[4]
[4] Stavitski E, Weckhuysen B M. Chem Soc Rev, 2010, 39: 4615
-
[5]
[5] Kim H, Kosuda K M, Van Duyne R P, Stair P C. Chem Soc Rev, 2010, 39: 4820
-
[6]
[6] Wu Z L, Kim H S, Stair P C, Rugmini S, Jackson S D. J Phys Chem B, 2005, 109: 2793
-
[7]
[7] Kim H S, Zygmunt S A, Stair P C, Zapol P, Curtiss L A. J Phys Chem C, 2009, 113: 8836
-
[8]
[8] Kim H S, Stair P C. J Phys Chem A, 2009, 113: 4346
-
[9]
[9] Xiong G, Feng Z C, Li J, Yang Q H, Ying P L, Xin Q, Li C. J Phys Chem B, 2000, 104: 3581
-
[10]
[10] Li M J, Feng Z H, Xiong G, Ying P L, Xin Q, Li C. J Phys Chem B, 2001, 105: 8107
-
[11]
[11] Li C, Xiong G, Xin Q, Liu J K, Ying P L, Feng Z C, Li J, Yang W B, Wang Y Z, Wang G R, Liu X Y, Lin M, Wang X Q, Min E Z. Angew Chem Int Ed, 1999, 38: 2220
-
[12]
[12] Stair P C. Adv Catal, 2007, 51: 75
-
[13]
[13] Fan F T, Feng Z C, Li C. Acc Chem Res, 2010, 43: 378
-
[14]
[14] Wang J Y, Li G N, Ju X H, Xia H A, Fan F T, Wang J H, Feng Z C, Li C. J Catal, 2013, 301: 77
-
[15]
[15] Guo Q, Sun K J, Feng Z C, Li G N, Guo M L, Fan F T, Li C. Chem Eur J, 2012, 18: 13854
-
[16]
[16] Jin S Q, Guo M L, Fan F T, Yang J X, Zhang Y, Huang B K, Feng Z C, Li C. J Raman Spectr, 2013, 44: 266
-
[17]
[17] Kim H, Ferguson G A, Cheng L, Zygmunt S A, Stair P C, Curtiss L A. J Phys Chem C, 2012, 116: 2927
-
[18]
[18] López I, Ertem M Z, Maji S, Benet-Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C J, Batista V S, Llobet A. Angew Chem Int Ed, 2014, 53: 205
-
[19]
[19] Woertink J S, Smeets P J, Groothaert M H, Vance M A, Sels B F, Schoonheydt R A, Solomon E I. PNAS, 2009, 106: 18908
-
[20]
[20] Nitsche D, Hess C. J Raman Spectr, 2013, 44: 1733
-
[21]
[21] Wu Z L, Kim H-S, Stair P C. In: Hargraves J S J, Jackson S D eds. Metal Oxide Catalysis, 2008. 177
-
[22]
[22] Launay H, Loridant S, Pigamo A, Dubois J L, Millet J M M. J Catal, 2007, 246: 390
-
[23]
[23] Sun Q, Jehng J M, Hu H C, Herman R G, Wachs I E, Klie K. J Catal, 1997, 165: 91
-
[24]
[24] Banares M A, Cardoso J H, Agullo-Rueda F, Correa-Bueno J M, Fierro J L G. Catal Lett, 2000, 64: 191
-
[25]
[25] Weckhuysen B M, Kelle D E. Catal Today, 2003, 78: 25
-
[26]
[26] Wachs I E. Dalton Trans, 2013, 42: 11762
-
[27]
[27] Wu Z L, Dai S, Overbury S H. J Phys Chem C, 2010, 114: 412
-
[28]
[28] Wu Z L, Li M J, Overbury S H. ChemCatChem, 2012, 4: 1653
-
[29]
[29] Wu Z L, Schwartz V, Li M, Rondinone A J, Overbury S H. J Phys Chem Lett, 2012, 3: 1517
-
[30]
[30] Wu Z L, Rondinone A J, Ivanov I N, Overbury S H. J Phys Chem C, 2011, 115: 25368
-
[31]
[31] Gao X T, Bare S R, Weckhuysen B M, Wachs I E. J Phys Chem B, 1998, 102: 10842
-
[32]
[32] Xie S B, Iglesia E, Bell A T. Langmuir, 2000, 16: 7162
-
[33]
[33] Wang C B, Deo G, Wachs I E. J Catal, 1998, 178: 640
-
[34]
[34] Jehng J M, Hu H C, Gao X T, Wachs I E. Catal Today, 1996, 28: 335
-
[35]
[35] Das N, Eckert H, Hu H C, Wachs I E, Walzer J F, Feher F J. J Phys Chem, 1993, 97: 8240
-
[36]
[36] Lee E L, Wachs I E. J Phys Chem C, 2007, 111: 14410
-
[37]
[37] Dinse A, Ozarowski A, Hess C, Schomacker R, Dinse K P. J Phys Chem C, 2008, 112: 17664
-
[38]
[38] Wachs I E, Weckhuysen B M. Appl Catal A, 1997, 157: 67
-
[39]
[39] Keller D E, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2006, 110: 14313
-
[40]
[40] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. J Catal, 2004, 224: 417
-
[41]
[41] Khodakov A, Olthof B, Bell A T, Iglesia E. J Catal, 1999, 181: 205
-
[42]
[42] Magg N, Immaraporn B, Giorgi J B, Schroeder T, Baumer M, Dobler J, Wu Z L, Kondratenko E, Cherian M, Baerns M, Stair P C, Sauer J, Freund H J. J Catal, 2004, 226: 88
-
[43]
[43] Gijzeman O L J, van Lingen J N J, van Lenthe J H, Tinnemans S J, Keller D E, Weckhuysen B M. Chem Phys Lett, 2004, 397: 277
-
[44]
[44] van Lingen J N J, Gijzerman O L J, Weckhuysen B M, van Lenthe J H. J Catal, 2006, 239: 34
-
[45]
[45] Keller D E, Visser T, Soulimani F, Koningsberger D C, Weckhuysen B M. Vib Spectr, 2007, 43: 140
-
[46]
[46] Moisii C, van de Burgt L J, Stiegman A E. Chem Mater, 2008, 20: 3927
-
[47]
[47] Moisii C, Curran M D, van de Burgt L J, Stiegman A E. J Mater Chem, 2005,15: 3519
-
[48]
[48] Lee E L, Wachs I E. J Phys Chem C, 2008, 112: 6487
-
[49]
[49] Guimond S, Abu Haija M, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S, Kuhlenbeck H, Freund H J, Dobler J, Sauer J. Top Catal, 2006, 38: 117
-
[50]
[50] Lewandowska A E, Banares M A, Tielens F, Che M, Dzwigaj S. J Phys Chem C, 2010, 114: 19771
-
[51]
[51] Chlosta R, Tzolova-Muller G, Schlogl R, Hess C. Catal Sci Technol, 2011,1: 1175
-
[52]
[52] van Lingen J N J, Gijzeman O L J, Havenith R W A, van Lenthe J H. J Phys Chem C, 2007, 111: 7071
-
[53]
[53] Islam M M, Costa D, Calatayud M, Tielens F. J Phys Chem C, 2009, 113: 10740
-
[54]
[54] Ohde C, Brandt M, Limberg C, Doebler J, Ziemer B, Sauer J. Dalton Trans, 2008: 326
-
[55]
[55] Todorova T K, Dobler J, Sierka M, Sauer J. J Phys Chem C, 2009, 113: 8336
-
[56]
[56] Döbler J, Pritzsche M, Sauer J. J Phys Chem C, 2009, 113: 12454
-
[57]
[57] Burcham L J, Deo G, Gao X T, Wachs I E. Top Catal, 2000, 11: 85
-
[58]
[58] Keller D E, de Groot F M F, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2005, 109: 10223
-
[59]
[59] Molinari J E, Wachs I E. J Am Chem Soc, 2010, 132: 12559
-
[60]
[60] Cavalleri M, Hermann K, Knop-Gericke A, Havecker M, Herbert R, Hess C, Oestereich A, Dobler J, Schlogl R. J Catal, 2009, 262: 215
-
[61]
[61] Hävecker M, Cavalleri M, Herbert R, Follath R, Knop-Gericke A, Hess C, Hermann K, Schlögl R. Phys Status Solidi B, 2009, 246: 1459
-
[62]
[62] Bulanek R, Capek L, Setnicka M, Cicmanec P. J Phys Chem C, 2011, 115: 12430
-
[63]
[63] Galeener F L, Mikkelsen J C. Phys Rev B, 1981, 23: 5527
-
[64]
[64] Gao X T, Wachs I E. J Phys Chem B, 2000,104: 1261
-
[65]
[65] Tian H J, Ross E I, Wachs I E. J Phys Chem B, 2006, 110: 9593
-
[66]
[66] Albrecht A C. J Chem Phys, 1961, 34: 1476
-
[67]
[67] Koningstein J A. J Mol Spectr, 1968, 28: 309
-
[68]
[68] Tang J, Albrecht A C. In: Szymanski H A ed. Raman Spectroscopy. New York: Plenum, 1970. 33
-
[69]
[69] Clark R J H, Stewart B. In: Inorganic Chemistry and Spectroscopy. Berlin: Springer Berlin Heidelberg, 1979, 36: 1
-
[70]
[70] Long D A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. New York: Wiley, 2002. 1
-
[71]
[71] Cotton F A, Wing R M. Inorg Chem, 1965, 4: 867
-
[72]
[72] Wu Z L, Zhang C, Stair P C. Catal Today, 2006, 113: 40
-
[73]
[73] Wu Z, Stair P C, Rugmini S, Jackson S D. J Phys Chem C, 2007, 111: 16460
-
[74]
[74] Gao X T, Banares M A, Wachs I E. J Catal, 1999, 188: 325
-
[75]
[75] Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Knoezinger H. Top Catal, 2002, 20: 65
-
[76]
[76] Martinez-Huerta M V, Coronado J M, Fernandez-Garcia M, Iglesias-Juez A, Deo G, Fierro J L G, Banares M A. J Catal, 2004, 225: 240
-
[77]
[77] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2007, 111: 18708
-
[78]
[78] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2008, 112: 11441
-
[79]
[79] Ganduglia-Pirovano M V, Popa C, Sauer J, Abbott H, Uhl A, Baron M, Stacchiola D, Bondarchuk O, Shaikhutdinov S, Freund H J. J Am Chem Soc, 2010, 132: 2345
-
[80]
[80] Taylor M N, Carley A F, Davies T E, Taylor S H. Top Catal, 2009, 52: 1660
-
[81]
[81] Abbott H L, Uhl A, Baron M, Lei Y, Meyer R J, Stacchiola D J, Bondarchuk O, Shaikhutdinov S, Freund H J. J Catal, 2010, 272: 82
-
[82]
[82] Feng T, Vohs J M. J Catal, 2004, 221: 619
-
[83]
[83] Wong G S, Concepcion M R, Vohs J M. J Phys Chem B, 2002, 106: 6451
-
[84]
[84] Wu Y N, Guo M, Chen F, Luo M F. Acta Phys-Chim Sin, 2010, 26: 2417
-
[85]
[85] Matta J, Courcot D, Abi-Aad E, Aboukais A. Chem Mater, 2002, 14: 4118
-
[86]
[86] Jehng J M, Deo G, Weckhuysen B M, Wachs I E. J Mol Catal A, 1996, 110: 41
-
[87]
[87] Wachs I E, Jehng J M, Deo G, Weckhuysen B M, Guliants V V, Benziger J B, Sundaresan S. J Catal, 1997, 170: 75
-
[88]
[88] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. J Phys Chem B, 2003, 107: 5162
-
[89]
[89] Banares M A, Martinez-Huerta M V, Gao X T, Wachs I E, Fierro J L G. Stud Surf Sci Catal, 2000, 130: 3125
-
[90]
[90] Burcham L J, Wachs I E. Catal Today, 1999, 49: 467
-
[91]
[91] Baron M, Abbott H, Bondarchuk O, Stacchiola D, Uhl A, Shaikhutdinov S, Freund H J, Popa C, Ganduglia-Pirovano M V, Sauer J. Angew Chem Int Ed, 2009, 48: 8006
-
[92]
[92] Popa C, Ganduglia-Pirovano M V, Sauer J. J Phys Chem C, 2011, 115: 7399
-
[93]
[93] Shapovalov V, Metiu H. J Phys Chem C, 2007, 111: 14179
-
[94]
[94] Qiao Z A, Wu Z L, Dai S. ChemSusChem, 2013, 6: 1821
-
[95]
[95] Wu Z L, Li M J, Howe J, Meyer H M, Overbury S H. Langmuir, 2010, 26: 16595
-
[96]
[96] Taniguchi T, Watanabe T, Sugiyama N, Subramani A K, Wagata H, Matsushita N, Yoshimura M. J Phys Chem C, 2009, 113: 19789
-
[97]
[97] Guo M, Lu J Q, Wu Y N, Wang Y J, Luo M F. Langmuir, 2011, 27: 3872
-
[98]
[98] Li L, Chen F, Lu J Q, Luo M F. J Phys Chem A, 2011, 115: 7972
-
[99]
[99] Li L, Hu G S, Lu J Q, Luo M F. Acta Phys-Chim Sin, 2012, 28: 1012
-
[100]
[100] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J Catal, 2005, 229: 206
-
[101]
[101] Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. J Phys Chem B, 2005, 109: 24380
-
[102]
[102] Trovarelli A. Catal Rev-Sci Eng, 1996, 38: 439
-
[103]
[103] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341
-
[104]
[104] Li C, Domen K, Maruya K, Onishi T. J Am Chem Soc, 1989, 111: 7683
-
[105]
[105] Banares M A. Adv Mater, 2011, 23: 5293
-
[106]
[106] Nolan M, Fearon J E, Watson G W. Solid State Ionics, 2006, 177: 3069
-
[107]
[107] Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W. Surf Sci, 2005, 576: 217
-
[108]
[108] Wu Z L, Li M J, Overbury S H. J Catal, 2012, 285: 61
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[9]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[10]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[11]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[12]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[13]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[14]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[15]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[16]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[17]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[20]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(427)
- HTML views(59)