Citation: Zili Wu. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts:Structure identification and quantification[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1591-1608. doi: 10.1016/S1872-2067(14)60082-6 shu

Multi-wavelength Raman spectroscopy study of supported vanadia catalysts:Structure identification and quantification

  • Corresponding author: Zili Wu, 
  • Received Date: 28 April 2014
    Available Online: 22 May 2014

    Fund Project:

  • Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure-catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In this review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. The qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.
  • 加载中
    1. [1]

      [1] Banares M A, Wach I E. J Raman Spectr, 2002, 33: 359

    2. [2]

      [2] Wachs I E, Roberts C A. Chem Soc Rev, 2010, 39: 5002

    3. [3]

      [3] Banares M A, Mestl G. Adv Catal, 2009, 52: 43

    4. [4]

      [4] Stavitski E, Weckhuysen B M. Chem Soc Rev, 2010, 39: 4615

    5. [5]

      [5] Kim H, Kosuda K M, Van Duyne R P, Stair P C. Chem Soc Rev, 2010, 39: 4820

    6. [6]

      [6] Wu Z L, Kim H S, Stair P C, Rugmini S, Jackson S D. J Phys Chem B, 2005, 109: 2793

    7. [7]

      [7] Kim H S, Zygmunt S A, Stair P C, Zapol P, Curtiss L A. J Phys Chem C, 2009, 113: 8836

    8. [8]

      [8] Kim H S, Stair P C. J Phys Chem A, 2009, 113: 4346

    9. [9]

      [9] Xiong G, Feng Z C, Li J, Yang Q H, Ying P L, Xin Q, Li C. J Phys Chem B, 2000, 104: 3581

    10. [10]

      [10] Li M J, Feng Z H, Xiong G, Ying P L, Xin Q, Li C. J Phys Chem B, 2001, 105: 8107

    11. [11]

      [11] Li C, Xiong G, Xin Q, Liu J K, Ying P L, Feng Z C, Li J, Yang W B, Wang Y Z, Wang G R, Liu X Y, Lin M, Wang X Q, Min E Z. Angew Chem Int Ed, 1999, 38: 2220

    12. [12]

      [12] Stair P C. Adv Catal, 2007, 51: 75

    13. [13]

      [13] Fan F T, Feng Z C, Li C. Acc Chem Res, 2010, 43: 378

    14. [14]

      [14] Wang J Y, Li G N, Ju X H, Xia H A, Fan F T, Wang J H, Feng Z C, Li C. J Catal, 2013, 301: 77

    15. [15]

      [15] Guo Q, Sun K J, Feng Z C, Li G N, Guo M L, Fan F T, Li C. Chem Eur J, 2012, 18: 13854

    16. [16]

      [16] Jin S Q, Guo M L, Fan F T, Yang J X, Zhang Y, Huang B K, Feng Z C, Li C. J Raman Spectr, 2013, 44: 266

    17. [17]

      [17] Kim H, Ferguson G A, Cheng L, Zygmunt S A, Stair P C, Curtiss L A. J Phys Chem C, 2012, 116: 2927

    18. [18]

      [18] López I, Ertem M Z, Maji S, Benet-Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C J, Batista V S, Llobet A. Angew Chem Int Ed, 2014, 53: 205

    19. [19]

      [19] Woertink J S, Smeets P J, Groothaert M H, Vance M A, Sels B F, Schoonheydt R A, Solomon E I. PNAS, 2009, 106: 18908

    20. [20]

      [20] Nitsche D, Hess C. J Raman Spectr, 2013, 44: 1733

    21. [21]

      [21] Wu Z L, Kim H-S, Stair P C. In: Hargraves J S J, Jackson S D eds. Metal Oxide Catalysis, 2008. 177

    22. [22]

      [22] Launay H, Loridant S, Pigamo A, Dubois J L, Millet J M M. J Catal, 2007, 246: 390

    23. [23]

      [23] Sun Q, Jehng J M, Hu H C, Herman R G, Wachs I E, Klie K. J Catal, 1997, 165: 91

    24. [24]

      [24] Banares M A, Cardoso J H, Agullo-Rueda F, Correa-Bueno J M, Fierro J L G. Catal Lett, 2000, 64: 191

    25. [25]

      [25] Weckhuysen B M, Kelle D E. Catal Today, 2003, 78: 25

    26. [26]

      [26] Wachs I E. Dalton Trans, 2013, 42: 11762

    27. [27]

      [27] Wu Z L, Dai S, Overbury S H. J Phys Chem C, 2010, 114: 412

    28. [28]

      [28] Wu Z L, Li M J, Overbury S H. ChemCatChem, 2012, 4: 1653

    29. [29]

      [29] Wu Z L, Schwartz V, Li M, Rondinone A J, Overbury S H. J Phys Chem Lett, 2012, 3: 1517

    30. [30]

      [30] Wu Z L, Rondinone A J, Ivanov I N, Overbury S H. J Phys Chem C, 2011, 115: 25368

    31. [31]

      [31] Gao X T, Bare S R, Weckhuysen B M, Wachs I E. J Phys Chem B, 1998, 102: 10842

    32. [32]

      [32] Xie S B, Iglesia E, Bell A T. Langmuir, 2000, 16: 7162

    33. [33]

      [33] Wang C B, Deo G, Wachs I E. J Catal, 1998, 178: 640

    34. [34]

      [34] Jehng J M, Hu H C, Gao X T, Wachs I E. Catal Today, 1996, 28: 335

    35. [35]

      [35] Das N, Eckert H, Hu H C, Wachs I E, Walzer J F, Feher F J. J Phys Chem, 1993, 97: 8240

    36. [36]

      [36] Lee E L, Wachs I E. J Phys Chem C, 2007, 111: 14410

    37. [37]

      [37] Dinse A, Ozarowski A, Hess C, Schomacker R, Dinse K P. J Phys Chem C, 2008, 112: 17664

    38. [38]

      [38] Wachs I E, Weckhuysen B M. Appl Catal A, 1997, 157: 67

    39. [39]

      [39] Keller D E, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2006, 110: 14313

    40. [40]

      [40] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. J Catal, 2004, 224: 417

    41. [41]

      [41] Khodakov A, Olthof B, Bell A T, Iglesia E. J Catal, 1999, 181: 205

    42. [42]

      [42] Magg N, Immaraporn B, Giorgi J B, Schroeder T, Baumer M, Dobler J, Wu Z L, Kondratenko E, Cherian M, Baerns M, Stair P C, Sauer J, Freund H J. J Catal, 2004, 226: 88

    43. [43]

      [43] Gijzeman O L J, van Lingen J N J, van Lenthe J H, Tinnemans S J, Keller D E, Weckhuysen B M. Chem Phys Lett, 2004, 397: 277

    44. [44]

      [44] van Lingen J N J, Gijzerman O L J, Weckhuysen B M, van Lenthe J H. J Catal, 2006, 239: 34

    45. [45]

      [45] Keller D E, Visser T, Soulimani F, Koningsberger D C, Weckhuysen B M. Vib Spectr, 2007, 43: 140

    46. [46]

      [46] Moisii C, van de Burgt L J, Stiegman A E. Chem Mater, 2008, 20: 3927

    47. [47]

      [47] Moisii C, Curran M D, van de Burgt L J, Stiegman A E. J Mater Chem, 2005,15: 3519

    48. [48]

      [48] Lee E L, Wachs I E. J Phys Chem C, 2008, 112: 6487

    49. [49]

      [49] Guimond S, Abu Haija M, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S, Kuhlenbeck H, Freund H J, Dobler J, Sauer J. Top Catal, 2006, 38: 117

    50. [50]

      [50] Lewandowska A E, Banares M A, Tielens F, Che M, Dzwigaj S. J Phys Chem C, 2010, 114: 19771

    51. [51]

      [51] Chlosta R, Tzolova-Muller G, Schlogl R, Hess C. Catal Sci Technol, 2011,1: 1175

    52. [52]

      [52] van Lingen J N J, Gijzeman O L J, Havenith R W A, van Lenthe J H. J Phys Chem C, 2007, 111: 7071

    53. [53]

      [53] Islam M M, Costa D, Calatayud M, Tielens F. J Phys Chem C, 2009, 113: 10740

    54. [54]

      [54] Ohde C, Brandt M, Limberg C, Doebler J, Ziemer B, Sauer J. Dalton Trans, 2008: 326

    55. [55]

      [55] Todorova T K, Dobler J, Sierka M, Sauer J. J Phys Chem C, 2009, 113: 8336

    56. [56]

      [56] Döbler J, Pritzsche M, Sauer J. J Phys Chem C, 2009, 113: 12454

    57. [57]

      [57] Burcham L J, Deo G, Gao X T, Wachs I E. Top Catal, 2000, 11: 85

    58. [58]

      [58] Keller D E, de Groot F M F, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2005, 109: 10223

    59. [59]

      [59] Molinari J E, Wachs I E. J Am Chem Soc, 2010, 132: 12559

    60. [60]

      [60] Cavalleri M, Hermann K, Knop-Gericke A, Havecker M, Herbert R, Hess C, Oestereich A, Dobler J, Schlogl R. J Catal, 2009, 262: 215

    61. [61]

      [61] Hävecker M, Cavalleri M, Herbert R, Follath R, Knop-Gericke A, Hess C, Hermann K, Schlögl R. Phys Status Solidi B, 2009, 246: 1459

    62. [62]

      [62] Bulanek R, Capek L, Setnicka M, Cicmanec P. J Phys Chem C, 2011, 115: 12430

    63. [63]

      [63] Galeener F L, Mikkelsen J C. Phys Rev B, 1981, 23: 5527

    64. [64]

      [64] Gao X T, Wachs I E. J Phys Chem B, 2000,104: 1261

    65. [65]

      [65] Tian H J, Ross E I, Wachs I E. J Phys Chem B, 2006, 110: 9593

    66. [66]

      [66] Albrecht A C. J Chem Phys, 1961, 34: 1476

    67. [67]

      [67] Koningstein J A. J Mol Spectr, 1968, 28: 309

    68. [68]

      [68] Tang J, Albrecht A C. In: Szymanski H A ed. Raman Spectroscopy. New York: Plenum, 1970. 33

    69. [69]

      [69] Clark R J H, Stewart B. In: Inorganic Chemistry and Spectroscopy. Berlin: Springer Berlin Heidelberg, 1979, 36: 1

    70. [70]

      [70] Long D A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. New York: Wiley, 2002. 1

    71. [71]

      [71] Cotton F A, Wing R M. Inorg Chem, 1965, 4: 867

    72. [72]

      [72] Wu Z L, Zhang C, Stair P C. Catal Today, 2006, 113: 40

    73. [73]

      [73] Wu Z, Stair P C, Rugmini S, Jackson S D. J Phys Chem C, 2007, 111: 16460

    74. [74]

      [74] Gao X T, Banares M A, Wachs I E. J Catal, 1999, 188: 325

    75. [75]

      [75] Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Knoezinger H. Top Catal, 2002, 20: 65

    76. [76]

      [76] Martinez-Huerta M V, Coronado J M, Fernandez-Garcia M, Iglesias-Juez A, Deo G, Fierro J L G, Banares M A. J Catal, 2004, 225: 240

    77. [77]

      [77] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2007, 111: 18708

    78. [78]

      [78] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2008, 112: 11441

    79. [79]

      [79] Ganduglia-Pirovano M V, Popa C, Sauer J, Abbott H, Uhl A, Baron M, Stacchiola D, Bondarchuk O, Shaikhutdinov S, Freund H J. J Am Chem Soc, 2010, 132: 2345

    80. [80]

      [80] Taylor M N, Carley A F, Davies T E, Taylor S H. Top Catal, 2009, 52: 1660

    81. [81]

      [81] Abbott H L, Uhl A, Baron M, Lei Y, Meyer R J, Stacchiola D J, Bondarchuk O, Shaikhutdinov S, Freund H J. J Catal, 2010, 272: 82

    82. [82]

      [82] Feng T, Vohs J M. J Catal, 2004, 221: 619

    83. [83]

      [83] Wong G S, Concepcion M R, Vohs J M. J Phys Chem B, 2002, 106: 6451

    84. [84]

      [84] Wu Y N, Guo M, Chen F, Luo M F. Acta Phys-Chim Sin, 2010, 26: 2417

    85. [85]

      [85] Matta J, Courcot D, Abi-Aad E, Aboukais A. Chem Mater, 2002, 14: 4118

    86. [86]

      [86] Jehng J M, Deo G, Weckhuysen B M, Wachs I E. J Mol Catal A, 1996, 110: 41

    87. [87]

      [87] Wachs I E, Jehng J M, Deo G, Weckhuysen B M, Guliants V V, Benziger J B, Sundaresan S. J Catal, 1997, 170: 75

    88. [88]

      [88] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. J Phys Chem B, 2003, 107: 5162

    89. [89]

      [89] Banares M A, Martinez-Huerta M V, Gao X T, Wachs I E, Fierro J L G. Stud Surf Sci Catal, 2000, 130: 3125

    90. [90]

      [90] Burcham L J, Wachs I E. Catal Today, 1999, 49: 467

    91. [91]

      [91] Baron M, Abbott H, Bondarchuk O, Stacchiola D, Uhl A, Shaikhutdinov S, Freund H J, Popa C, Ganduglia-Pirovano M V, Sauer J. Angew Chem Int Ed, 2009, 48: 8006

    92. [92]

      [92] Popa C, Ganduglia-Pirovano M V, Sauer J. J Phys Chem C, 2011, 115: 7399

    93. [93]

      [93] Shapovalov V, Metiu H. J Phys Chem C, 2007, 111: 14179

    94. [94]

      [94] Qiao Z A, Wu Z L, Dai S. ChemSusChem, 2013, 6: 1821

    95. [95]

      [95] Wu Z L, Li M J, Howe J, Meyer H M, Overbury S H. Langmuir, 2010, 26: 16595

    96. [96]

      [96] Taniguchi T, Watanabe T, Sugiyama N, Subramani A K, Wagata H, Matsushita N, Yoshimura M. J Phys Chem C, 2009, 113: 19789

    97. [97]

      [97] Guo M, Lu J Q, Wu Y N, Wang Y J, Luo M F. Langmuir, 2011, 27: 3872

    98. [98]

      [98] Li L, Chen F, Lu J Q, Luo M F. J Phys Chem A, 2011, 115: 7972

    99. [99]

      [99] Li L, Hu G S, Lu J Q, Luo M F. Acta Phys-Chim Sin, 2012, 28: 1012

    100. [100]

      [100] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J Catal, 2005, 229: 206

    101. [101]

      [101] Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. J Phys Chem B, 2005, 109: 24380

    102. [102]

      [102] Trovarelli A. Catal Rev-Sci Eng, 1996, 38: 439

    103. [103]

      [103] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341

    104. [104]

      [104] Li C, Domen K, Maruya K, Onishi T. J Am Chem Soc, 1989, 111: 7683

    105. [105]

      [105] Banares M A. Adv Mater, 2011, 23: 5293

    106. [106]

      [106] Nolan M, Fearon J E, Watson G W. Solid State Ionics, 2006, 177: 3069

    107. [107]

      [107] Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W. Surf Sci, 2005, 576: 217

    108. [108]

      [108] Wu Z L, Li M J, Overbury S H. J Catal, 2012, 285: 61

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    13. [13]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    14. [14]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(0)
  • Abstract views(427)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return