Citation: Wan-Kuen Jo, Hyun-Jung Kang. Aluminum sheet-based S-doped TiO2 for photocatalytic decomposition of toxic organic vapors[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1189-1195. doi: 10.1016/S1872-2067(14)60076-0 shu

Aluminum sheet-based S-doped TiO2 for photocatalytic decomposition of toxic organic vapors

  • Corresponding author: Wan-Kuen Jo, 
  • Received Date: 5 January 2014
    Available Online: 12 March 2014

    Fund Project: This work was supported by the National Research Foundation of Korea Grant Funded by the Korean Government (2011-0027916). (2011-0027916)

  • S-doped TiO2 (S-TiO2) films were immobilized on flexible low-cost aluminum sheets (S-TiO2-AS) using a sol-gel dipping process and low post-processing temperatures. The photocatalytic degradation of toxic organic vapors using the prepared films was evaluated using a continuous-flow glass tube under visible light exposure. The surface properties of the S-TiO2-AS and TiO2-AS films were examined by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet-visible spectroscopy. The photolysis of benzene, toluene, ethyl benzene, and xylene (BTEX) did not occur on the bare AS. In contrast, the photocatalytic degradation efficiencies of the target pollutants using S-TiO2-AS were higher than those obtained using reference TiO2-AS photocatalyst. In particular, the average photocatalytic degradation efficiencies of BTEX using S-TiO2-0.8-AS (S/Ti ratio=0.8) over a 3-h process were 34%, 78%, 91%, and 94%, respectively, whereas those of TiO2-AS were 2%, 11%, 21%, and 36%, respectively. The photocatalytic decomposition efficiencies of BTEX under visible irradiation using S-TiO2-AS increased with increasing S/Ti ratios from 0.2 to 0.8, but decreased when the ratio further increased to 1.6. Thus, S-TiO2-AS can be prepared using optimal S/Ti ratios. The degradation of BTEX over S-TiO2-AS depended on the air flow rates and initial concentrations of the target chemical. Overall, under optimal conditions, S-TiO2-AS can be effectively applied for the purification of toxic organic vapors.
  • 加载中
    1. [1]

      [1] Gaya U I, Abdullah A H. J Photochem Photobiol C, 2008, 9: 1

    2. [2]

      [2] Nakata K, Fujishima A. J Photochem Photobiol C, 2012, 13: 169

    3. [3]

      [3] Ochiai T, Fujishima A. J Photochem Photobiol C, 2012, 13: 247

    4. [4]

      [4] Pelaez M, Nolan N T, Pillai S, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    5. [5]

      [5] Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Appl Catal A, 2004, 265: 115

    6. [6]

      [6] Dimitroula H, Daskalaki V M, Frontistis Z, Kondarides D I, Panagiotopoulou P, Xekoukoulotakis N P, Mantzavinos D. Appl Catal B, 2012, 117-118: 283

    7. [7]

      [7] McManamon C, Delaney P, Morris M A. J Colloid Interf Sci, 2013, 411: 169

    8. [8]

      [8] Vinu R, Polisetti S, Madras G. Chem Eng J, 2010, 165: 784

    9. [9]

      [9] Wang Y, Su Y R, Qiao L, Liu L X, Sul Q, Zhu C Q, Liu X Q. Nanotechnology, 2011, 22: 225702

    10. [10]

      [10] Bayati M R, Moshfegh A Z, Golestani-Fard F. Appl Catal A, 2010, 389: 60

    11. [11]

      [11] Jo W K, Shin M H. J Environ Manage, 2010, 91: 2059

    12. [12]

      [12] Shan A Y, Ghazi T I M, Rashid S A. Appl Catal A, 2010, 389: 1

    13. [13]

      [13] Bianchi C L, Pirola C, Selli E, Biella S. J Hazard Mater, 2012, 211-212: 203

    14. [14]

      [14] Seabra M P, Rego E, Ribeiro A, Labrincha J A. Chem Eng J, 2011, 171: 175

    15. [15]

      [15] Lin S H, Zhang X W, Sun Q J, Zhou T T, Lu J J. Mater Res Bull, 2013, 48: 4570

    16. [16]

      [16] Rodriguez P, Meille V, Pallier S, Sawah M A A. Appl Catal A, 2009, 360: 154

    17. [17]

      [17] Demeestere K, De Visscher A, Dewulf J, Van Leeuwen M, Van Langenhove H. Appl Catal B, 2004, 54: 261

    18. [18]

      [18] Sleiman M, Conchon P, Ferronato C, Chovelon J-M. Appl Catal B, 2009, 86: 159

    19. [19]

      [19] Lee D M, Yun H J, Yu S, Yun S J, Lee S Y, Kang S H, Yi J. Chem Eng J, 2012, 187: 203

    20. [20]

      [20] Lopes F V S, Monteiro R A R, Silva A M T, Silva G V, Faria J L, Mendes A M, Vilar V J P, Boaventura R A R. Chem Eng J, 2012, 204-206: 244

    21. [21]

      [21] Zhang X W, Xu S Y, Han G R. Mater Lett, 2009, 63: 1761

    22. [22]

      [22] Kwon C H, Shin H, Kim J H, Choi W S, Yoon K H. Chem Phys, 2004, 86: 78

    23. [23]

      [23] Chen S Z, Zhang P Y, Zhu W P, Chen L, Xu S M. Appl Surf Sci, 2006, 252: 7532

    24. [24]

      [24] Lim L L P, Lynch R J, In S-I. Appl Catal A, 2009, 365: 214

    25. [25]

      [25] Lopez L, Daoud W A, Dutta D, Panther B C, Turney T W. Appl Surf Sci, 2013, 265: 162

    26. [26]

      [26] Esplugues A, Ballester F, Estarlich M, Llop S, Fuentes-Leonarte V, Mantilla E, Ińiguez C. Sci Total Environ, 2010, 409: 63.

    27. [27]

      [27] Ramírez N, Cuadras A, Rovira E, Borrull F, Marcé R M. Environ Int, 2012, 39: 200

    28. [28]

      [28] Liu S X, Chen X Y. J Hazard Mater, 2008, 152: 48

    29. [29]

      [29] Jo W K, Kim J T. J Hazard Mater, 2009, 164: 360

    30. [30]

      [30] Jo W K, Lee J Y. Chin J Catal (催化学报), 2013, 34: 2209

    31. [31]

      [31] Jo W K, Kim J T. J Chem Technol Biotechnol, 2010, 85: 485

    32. [32]

      [32] Yu Q L, Brouwers H J H. Appl Catal B, 2009, 92: 454

    33. [33]

      [33] Chun H H, Jo W K. Chin J Catal (催化学报), 2013, 34: 1256

    34. [34]

      [34] Jeong J, Sekiguchi K, Lee W, Sakamoto K. J Photochem Photobiol A, 2005, 169: 279

    35. [35]

      [35] Yu K P, Lee G W M, Huang W M, Wu C, Yang S. Atm Environ, 2006, 40: 375

    36. [36]

      [36] Henderson M A. Surf Sci Rep, 2011, 66: 185

    37. [37]

      [37] Ku Y, Ma C M, Shen Y S. Appl Catal B, 2001, 34: 181

  • 加载中
    1. [1]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    2. [2]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    3. [3]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    4. [4]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    5. [5]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    6. [6]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    7. [7]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    8. [8]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    9. [9]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    10. [10]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    11. [11]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    12. [12]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    13. [13]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    16. [16]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    17. [17]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    18. [18]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    19. [19]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    20. [20]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

Metrics
  • PDF Downloads(0)
  • Abstract views(364)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return