Citation: Rong'an He, Shaowen Cao, Peng Zhou, Jiaguo Yu. Recent advances in visible light Bi-based photocatalysts[J]. Chinese Journal of Catalysis, ;2014, 35(7): 989-1007. doi: 10.1016/S1872-2067(14)60075-9 shu

Recent advances in visible light Bi-based photocatalysts

  • Corresponding author: Jiaguo Yu, 
  • Received Date: 26 January 2014
    Available Online: 12 March 2014

    Fund Project:

  • Photocatalysis is considered to be an effective solution for the current energy and environmental crises caused by industrial development. However, the practical application of conventional oxide photocatalysts is restricted by poor visible light adsorption because of their wide band gaps. The study of photocatalysts with a narrow band gap is thus a hot topic. Among oxide photocatalysts, Bi-based photocatalysts have attracted much interest because of their high visible light photocatalytic activity. This review summarizes recent advances into the type, preparation method, morphology control, composite construction, and properties of Bi-based photocatalysts. Finally, this review ends with a discussion on the future development of Bi-based photocatalysts in this exciting research area.
  • 加载中
    1. [1]

      [1] Rowan L, Aidan W. Carbon, 2011, 49: 741

    2. [2]

      [2] Low J X, Yu J G, Li Q, Cheng B. Phys Chem Chem Phys, 2014, 16: 1111

    3. [3]

      [3] Fujishima A, Zhang X T, Tryk D A. Surf Sci Rep, 2008, 63: 515

    4. [4]

      [4] Fujishima A, Honda K. Nature, 1972, 238: 37

    5. [5]

      [5] Jiang Y, Zhang P, Liu Z W, Xu F. Mater Chem Phys, 2006, 99: 498

    6. [6]

      [6] Jin J, Yu J G, Liu G, Wong P K. J Mater Chem A, 2013, 1: 10927

    7. [7]

      [7] Yu J G, Li Q, Liu S W, Jaroniec M. Chem Eur J, 2013, 19: 2433

    8. [8]

      [8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    9. [9]

      [9] Wang X J, Liu Y F, Hu Z H, Chen Y J, Liu W, Zhao G H. J Hazard Mater, 2009, 169: 1061

    10. [10]

      [10] Hirano K, Suzuki E, Ishikawa A, Moroi T, Shiroishi H, Kaneko M. J Photochem Photobiol A, 2000, 136: 157

    11. [11]

      [11] Blasse G, Dirksen G J, de Korte P H M. Mater Res Bull, 1981, 16: 991

    12. [12]

      [12] Ke D N, Peng T Y, Ma L, Cai P, Jiang P. Appl Catal A, 2008, 350: 111

    13. [13]

      [13] Zhang Z, Wang W, Shang M, Yin W. J Hazard Mater, 2010, 177: 1013

    14. [14]

      [14] Li E J, Chen L, Zhang Q, Li W H, Yin S F. Prog Chem (李二军, 陈浪, 章强, 李文华, 尹双凤. 化学进展), 2010, 22: 2282

    15. [15]

      [15] Zhang L P, Yuan S, Hu F, Chang X F. Prog Chem (张莉平, 袁实, 胡峰, 常晓峰. 化学进展), 2010, 22: 1729

    16. [16]

      [16] Takei T, Haramoto R, Dong Q, Kumada N, Yonesaki Y, Kinomura N, Mano T, Nishimoto S, Kameshima Y, Miyake M. J Solid State Chem, 2011, 184: 2017

    17. [17]

      [17] Li Y J, Cao T P, Shao C L, Wang C H. J Inorg Mater (李跃军, 曹铁平, 邵长路, 王长华. 无机材料学报), 2012, 27: 687

    18. [18]

      [18] Kim H, Jin C, Park S, Lee W I, Chin I J, Lee C. Chem Eng J, 2013, 215-216: 151

    19. [19]

      [19] Nogueira A E, Longo E, Leite E R, Camargo E R. J Colloid Interf Sci, 2014, 415: 89

    20. [20]

      [20] la Cruz A M, Alfaro S O, Cuellar E L, Mendez U O. Catal Today, 2007, 129: 194

    21. [21]

      [21] García-Pérez U M, Sepúlveda-Guzmán S, la Cruz A M. Solid State Sci, 2012, 14: 293

    22. [22]

      [22] Zheng Y, Duan F, Chen M Q, Xie Y. J Mol Catal A, 2010, 317: 34

    23. [23]

      [23] Madhusudan P, Zhang J, Cheng B, Liu G. CrystEngComm, 2013, 15: 231

    24. [24]

      [24] Su W Y, Wang J, Huang Y X, Wang W J, Wu L, Wang X X, Liu P. Scripta Mater, 2010, 62: 345

    25. [25]

      [25] Wang W D, Huang F Q, Lin X P. Scripta Mater, 2007, 56: 669

    26. [26]

      [26] Zhang X, Ai Z H, Jia F L, Zhang L Z. J Phys Chem C, 2008, 112: 747

    27. [27]

      [27] Wang W D, Huang F Q, Lin X P, Yang J H. Catal Commun, 2008, 9: 8

    28. [28]

      [28] Kako T, Zou Z, Katagir I M, Ye J H. Chem Mater, 2007, 19: 198

    29. [29]

      [29] Ramachandran R, Sathiya M, Ramesha K, Prakash A S, Madras G, Shukla A K. J Chem Sci, 2011, 123: 517

    30. [30]

      [30] Yu X J, Zhou J Y, Wang Z P, Cai W. J Photochem Photobiol B, 2010, 101: 265

    31. [31]

      [31] Yu J G, Ran J R. Energy Environ Sci, 2011, 4: 1364

    32. [32]

      [32] Carlsson J M, Hellsing B, Domingos H S, Bristowe P D. Phys Rev B, 2002, 65: 205122

    33. [33]

      [33] Zhang L S, Wang W Z, Yang J, Chen Z G, Zhang W Q, Zhou L, Liu S W. Appl Catal A, 2006, 308: 105

    34. [34]

      [34] Drache M, Roussel P, Wignacourt J P. Chem Rev, 2007, 107: 80

    35. [35]

      [35] Zhang L W, Zhu Y F. Catal Sci Technol, 2012, 2: 694

    36. [36]

      [36] Gurunathan K. Int J Hydrogen Energy, 2004, 29: 933

    37. [37]

      [37] Xie J M, Lu X M, Chen M, Zhao G Q, Song Y Z, Lu S S. Dyes Pigments, 2008, 77: 43

    38. [38]

      [38] Huang L, Li L P, Yan T J, Li G S. Chin J Struct Chem (黄磊, 李莉萍, 颜廷红, 李广社. 结构化学), 2009, 28: 1458

    39. [39]

      [39] Chen F J, Cao Y L, Jia D Z. J Colloid Interf Sci, 2013, 404: 110

    40. [40]

      [40] Bao H F, Cui X Q, Li C M, Gan Y, Zhang J, Guo J. J Phys Chem C, 2007, 111: 12279

    41. [41]

      [41] Zhu X Q, Zhang J L, Chen F. Appl Catal B, 2011, 102: 316

    42. [42]

      [42] Zhou A Q, Xu X H, Yao W F, Zeng F L, Song B Q. Chin J Chem Phys (周爱秋, 许效红, 姚伟峰, 曾凡亮, 宋邦强. 化学物理学报), 2004, 17: 305

    43. [43]

      [43] Yang Z, Fan H Q, Wang X, Long C B. J Phys Chem Solids, 2013, 74: 1739

    44. [44]

      [44] Li Y Y, Dang L Y, Han L F, Li P P, Wang J S, Li Z J. J Mol Catal A, 2013, 379: 146

    45. [45]

      [45] Lin T, Chen Y Q, Wang H Y, Liu X H, Yang Y C. Chin J Catal (林涛, 陈耀强, 王和义, 刘秀华, 杨宇川. 催化学报), 2009, 30: 873

    46. [46]

      [46] Wu L, Bi J H, Li Z H, Wang X X, Fu X Z. Catal Today, 2008, 131: 15

    47. [47]

      [47] Xiang Q J, Yu J G, Wong P K. J Colloid Interf Sci, 2011, 357: 163

    48. [48]

      [48] Yu J G, Xiong J F, Cheng B, Yu Y, Wang J B. J Solid State Chem, 2005, 178: 1968

    49. [49]

      [49] Yan Y, Wu Y F, Yan Y T, Guan W S, Shi W D. J Phys Chem C, 2013, 117: 20017

    50. [50]

      [50] Hu S P, Xu C Y, Zhen L. Mater Lett, 2013, 95: 117

    51. [51]

      [51] Bi J H, Wu L, Li J, Li Z H, Wang X X, Fu X Z. Acta Mater, 2007, 55: 4699

    52. [52]

      [52] Klisinska A, Mamede A S, Gaigneaux E M. Catal Today, 2007, 128: 145

    53. [53]

      [53] Man Y, Zong R L, Zhu Y F. Acta Phys-Chim Sin (满毅, 宗瑞隆, 朱永法. 物理化学学报), 2007, 23: 1671

    54. [54]

      [54] Wang X, Gu F, Li L, Fang G L, Wang X. Mater Res Bull, 2013, 48: 3761

    55. [55]

      [55] Li H H, Li K W, Wang H. Chin J Inor Chem (李红花, 李坤威, 汪浩, 无机化学学报), 2010, 26: 138

    56. [56]

      [56] Cuellar E L, Cruz A M L, Rodriguez K H L, Mendez U O. Catal Today, 2011, 166: 140

    57. [57]

      [57] Wang X, Chang L, Wang J, Song N, Liu H, Wan X. Micro Nano Lett, 2012, 7: 1129

    58. [58]

      [58] Tian G H, Chen Y J, Zhou W, Pan K, Dong Y, Tian C, Fu H. J Mater Chem, 2011, 21: 887

    59. [59]

      [59] Wang W Z, Shang M, Yin W Z, Ren J, Zhou L. J Inorg Mater (王文中, 尚萌, 尹文宗, 任佳, 周林. 无机材料学报), 2012, 27: 11

    60. [60]

      [60] Zhao Y, Xie Y, Zhu X, Yan S, Wang S X. Chem-Eur J, 2008, 14: 1601

    61. [61]

      [61] Zhang L L, Long J X, Pan W W, Zhou S Y, Zhu J W, Zhao Y J, Wang X, Cao G Z. Mater Chem Phys, 2012, 136: 897

    62. [62]

      [62] Madhusudan P, Kumar M V, Ishigaki T, Toda K, Uematsu K, Sato M. Environ Sci Pollut Res, 2013, 20: 6638

    63. [63]

      [63] Chen L, Alarcón-Lladó E, Hettick M, Sharp I D, Lin Y J, Javey A, Ager J W. J Phys Chem C, 2013, 117: 21635

    64. [64]

      [64] Ge L, Zhang X H. J Inorg Mater (戈磊, 张宪华. 无机材料学报), 2009, 24: 453

    65. [65]

      [65] Liu S W, Yin K, Ren W S, Cheng B, Yu J G. J Mater Chem, 2012, 22: 17759

    66. [66]

      [66] Madhusudan P, Ran J R, Zhang J, Yu J G, Liu G. Appl Catal B, 2011, 110: 286

    67. [67]

      [67] Liu J J, Chen S F, Liu Q Z, Zhu Y F, Zhang J F. Chem Phys Lett, 2013, 572: 101

    68. [68]

      [68] Chen S F, Cao Z S, Fu X L. Mater Chem Phys, 2013, 142: 748

    69. [69]

      [69] Tang J W, Zou Z G, Ye J H. J Phys Chem C, 2007, 111: 12779

    70. [70]

      [70] Chang X F, Huang J, Cheng C, Sha W, Li X, Ji G B, Deng S B, Yu G. J Hazard Mater, 2010, 173: 765

    71. [71]

      [71] Yu K, Yang S G, Boyd S A, Chen H Z, Sun C. J Hazard Mater, 2011, 197: 88

    72. [72]

      [72] Grice J D. Can Mineral, 2002, 40: 693

    73. [73]

      [73] Dong F, Ho W K, Lee S C, Wu Z B, Fu M, Zou S C, Huang Y. J Mater Chem, 2011, 21: 12428

    74. [74]

      [74] Ai Z H, Ho W K, Lee S C. Appl Surf Sci, 2012, 263: 266

    75. [75]

      [75] Zhang G K, Li M, Yu S J, Zhang S M, Huang B B, Yu J G. J Colloid Interf Sci, 2010, 345: 467

    76. [76]

      [76] He C H, Gu M Y. Scripta Mater, 2006, 55: 481

    77. [77]

      [77] Liu Y F, Ma X G, Yi X, Zhu Y F. Acta Phys-Chim Sin (刘艳芳, 马新国, 易欣, 朱永法. 物理化学学报), 2012, 28: 654

    78. [78]

      [78] Wei P Y, Yang Q L, Guo L. Prog Chem (魏平玉, 杨青林, 郭林. 化学进展), 2009, 21: 1734

    79. [79]

      [79] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Appl Catal B, 2006, 68: 125

    80. [80]

      [80] Shenawi-Khalil S, Uvarov V, Kritsman Y, Menes E, Popov I, Sasson Y. Catal Commun, 2011, 12: 1136

    81. [81]

      [81] Pare B, Sarwan B, Jonnalagadda S B. Appl Surf Sci, 2011, 258: 247

    82. [82]

      [82] Shi Z Q, Wang Y, Fan C M, Wang Y F, Ding G Y. Trans Nonferrous Met Soc China, 2011, 21: 2254

    83. [83]

      [83] Li Y Y, Liu J P, Jiang J, Yu J G. Dalton Trans, 2011, 40: 6632

    84. [84]

      [84] Hao R, Xiao X, Zuo X X, Nan J M, Zhang W D. J Hazard Mater, 2012, 209-210: 137

    85. [85]

      [85] Lin X, Shan Z, Li K, Wang W, Yang J, Huang F. Solid State Sci, 2007, 9: 944

    86. [86]

      [86] Duan F, Zhang Q, Wei Q F, Shi D J, Chen M Q. Prog Chem (段芳, 张琴, 魏取福, 施冬健, 陈明清. 化学进展), 2014, 26: 30

    87. [87]

      [87] Yu H T, Quan X. Prog Chem (于洪涛, 全燮. 化学进展), 2009, 21: 406

    88. [88]

      [88] Liu C, Tang J Y, Chen H M, Liu B, Yang P D. Nano Lett, 2013, 13: 2989

    89. [89]

      [89] Xiao X, Hao R, Liang M, Zuo X X, Nan J M, Li L S, Zhang W D. J Hazard Mater, 2012, 233-234: 122

    90. [90]

      [90] Dai G P, Yu J G, Liu G. J Phys Chem C, 2011, 115: 7339

    91. [91]

      [91] Yu H G, Liu R, Wang X F, Wang P, Yu J G. Appl Catal B, 2012, 111-112: 326

    92. [92]

      [92] Wu D W, Li S, Chen Y Q, Gong M C, Zhang Q L, Liu K L, Wang Y L. Acta Phys-Chim Sin (吴大旺, 李硕, 陈耀强, 龚茂初, 张秋林, 刘康莲, 王玉林. 物理化学学报), 2010, 26: 3299

    93. [93]

      [93] Park H S, Lee H C, Leonard K C, Liu G J, Bard A J. ChemPhysChem, 2013, 14: 2277

    94. [94]

      [94] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    95. [95]

      [95] Prekajski M, Fruth V, Andronescu C, Trandafilovic L V, Pantic J, Kremenovic A, Matovic B. J Alloy Compd, 2013, 578: 26

    96. [96]

      [96] Politova E D, Fortalnova E A, Kaleva G M, Mosunov A V, Safronenko M G, Venskovskii N U. Solid State Ionics, 2011, 192: 248

    97. [97]

      [97] Wang Q Z, Liu H, Yuan J, Shangguan W F. Chin J Catal (王其召, 刘恢, 袁坚, 上官文峰. 催化学报), 2009, 30: 565

    98. [98]

      [98] Liu H, Yuan J, Shangguan W F. Chem J Chin Univ (刘恢, 袁坚, 上官文峰. 高等学校化学学报), 2008, 29: 1603

    99. [99]

      [99] Shannon R D, Waring R K. J Phys Chem Solids, 1985, 46: 325

    100. [100]

      [100] Ren K X, Liu J, Liang J, Zhang K, Zheng X, Luo H D, Huang Y B, Liu P J, Yu X B. Dalton Trans, 2013, 42: 9706

    101. [101]

      [101] Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Chem-Eur J, 2011, 17: 9342

    102. [102]

      [102] Wang J, Gao X M, Fu F, Zhang L P, Wu Y F. J Residuals Sci Technol, 2012, 9: 101

    103. [103]

      [103] Lei Y Q, Wang G H, Guo P R, Song H C. Appl Surf Sci, 2013, 279: 374

    104. [104]

      [104] Su M H, He C, Zhu L F, Sun Z J, Shan C, Zhang Q, Shu D, Qiu R L, Xiong Y. J Hazard Mater, 2012, 229-230: 72

    105. [105]

      [105] Yu J G, Jin J, Cheng B, Jaroniec M. J Mater Chem A, 2014, 2: 3407

    106. [106]

      [106] Xiang Q J, Yu J G. J Phys Chem Lett, 2013, 4: 753

    107. [107]

      [107] Fu Y S, Sun X Q, Wang X. Mater Chem Phys, 2011, 131: 325

    108. [108]

      [108] Liu X J, Pan L K, Lv T, Sun Z, Sun C Q. J Colloid Interf Sci, 2013, 408: 145

    109. [109]

      [109] Xiang Q J, Yu J G, Jaroniec M. Chem Soc Rev, 2012, 41: 782

    110. [110]

      [110] Madhusudan P, Yu J G, Wang W G, Cheng B, Liu G. Dalton Trans, 2012, 41: 14345

    111. [111]

      [111] Gao E P, Wang W Z, Shang M, Xu J H. Phys Chem Chem Phys, 2011, 13: 2887

    112. [112]

      [112] Liu Z, Xu W C, Fang J Z, Xu X X, Wu S X, Zhu X M, Chen Z H. Appl Surf Sci, 2012, 259: 441

    113. [113]

      [113] Wang Y N, Deng K J, Zhang L Z. J Phys Chem C, 2011, 115: 14300

    114. [114]

      [114] Xie D, Su Q M, Zhang J, Du G H, Xu B S. J Mater Sci, 2014, 49: 218

    115. [115]

      [115] Zhao G, Liu S W, Lu Q F, Xu F X, Sun H Y. J Alloy Compd, 2013, 578: 12

    116. [116]

      [116] Xia J X, Yin S, Li H M, Xu H, Yan Y S, Zhang Q. Langmuir, 2011, 27: 1200

    117. [117]

      [117] Deng C H, Guan H M. Mater Lett, 2013, 107: 119

    118. [118]

      [118] Zhang M Y, Shao C L, Zhang P, Su C Y, Zhang X, Liang P P, Sun Y Y, Liu Y C. J Hazard Mater, 2012, 225-226: 155

    119. [119]

      [119] Cui Z K, Liu J, Zeng D W, Liu H W, Xie C S. J Am Ceram Soc, 2010, 93: 1479

    120. [120]

      [120] Tang M H, Shu W, Yang F, Zhang J, Dong G J, Hou J W. Nanotechnology, 2009, 20: 385602

    121. [121]

      [121] Dai G P, Liu S Q, Peng R, Luo T X. Acta Phys-Chim Sin (戴高鹏, 刘素芹, 彭荣, 罗天雄. 物理化学学报), 2012, 28: 2169

    122. [122]

      [122] Wang Y, Zhao J Z, Zhu Y C, Zhou B, Zhao X, Wang Z Z. Colloid Surf A, 2013, 434: 296

    123. [123]

      [123] Sun J X, Chen G, Wu J Z, Dong H J, Xiong G H. Appl Catal B, 2013, 132-133: 304

    124. [124]

      [124] Chen Y, Liu G C, Li Z Y, Huang S P, Zhou K C. Chin J Catal (陈渊, 刘国聪, 李志友, 黄苏萍, 周科朝. 催化学报), 2011, 32: 1631

    125. [125]

      [125] Wu Y C, Chaing Y C, Huang C Y, Wang S F, Yang H Y. Dyes Pigments, 98 2013, 98: 25

    126. [126]

      [126] Zhang L W, Xu T G, Zhao X, Zhu Y F. Appl Catal B, 2010, 98: 138

    127. [127]

      [127] Zhang D, Li J, Wang Q G, Wu Q S. J Mater Chem A, 2013, 1: 8622

  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return