Citation: Yang Liu, Xiaosong Li, Jinglin Liu, Chuan Shi, Aimin Zhu. Ozone catalytic oxidation of benzene over AgMn/HZSM-5 catalysts at room temperature:Effects of Mn loading and water content[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1465-1474. doi: 10.1016/S1872-2067(14)60070-X shu

Ozone catalytic oxidation of benzene over AgMn/HZSM-5 catalysts at room temperature:Effects of Mn loading and water content

  • Corresponding author: Aimin Zhu, 
  • Received Date: 22 January 2014
    Available Online: 3 March 2014

    Fund Project:

  • The effects of Mn loading and water content on AgMn/HZSM-5 (AgMn/HZ) catalysts were investigated in the ozone catalytic oxidation (OZCO) of benzene in a continuous air flow at room temperature. The catalytic activity is closely related to the Mn loading, and the AgMn/HZ catalyst with 2.4 wt% Mn (AgMn/HZ(2.4)) had the highest activity and stability in benzene oxidation as a result of its large surface area and high MnOx dispersion. Temperature-programmed desorption of the used catalysts demonstrated that 2.4 wt% was also the optimal Mn loading for suppressing the accumulation of benzene and HCOOH over the catalyst surface after benzene oxidation. For AgMn/HZ catalysts with Mn loadings ≤ 2.4 wt%, O3 decomposition to active oxygen species (O*) plays the most important role in benzene oxidation; however, benzene activation is the crucial step for benzene oxidation by O3 over AgMn/HZ catalysts with Mn loadings > 2.4 wt%. The AgMn/HZ(2.4) catalyst was then used to perform OZCO of benzene in a humid stream. Compared with dry gas, water vapor greatly enhanced the activity and stability of the AgMn/HZ(2.4) catalyst, and 0.1-0.2 vol% was the optimal water content for benzene oxidation.
  • 加载中
    1. [1]

      [1] Whysner J, Reddy M V, Ross P M, Mohan M, Lax E A. Mutat Res, 2004, 566: 99

    2. [2]

      [2] Zhao D Z, Ding T Y, Li X S, Liu J L, Shi C, Zhu A M. Chin J Catal (赵德志, 丁天英, 李小松, 刘景林, 石川, 朱爱民. 催化学报), 2012, 33: 396

    3. [3]

      [3] Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Appl Catal B, 2003, 46: 639

    4. [4]

      [4] Xiao H, Liu R P, Zhao X, Qu J H. Chemosphere, 2008, 72: 1006

    5. [5]

      [5] Long L P, Zhao J G, Yang L X, Fu M L, Wu J L, Huang B C, Ye D Q. Chin J Catal (龙丽萍, 赵建国, 杨利娴, 付名利, 吴军良, 黄碧纯, 叶代启. 催化学报), 2011, 32: 904

    6. [6]

      [6] Konova P, Stoyanova M, Naydenov A, Christoskova St, Mehandjiev D. Appl Catal A, 2006, 298: 109

    7. [7]

      [7] Naydenov A, Mehandjiev D. Appl Catal A, 1993, 97: 17

    8. [8]

      [8] Mehandjiev D, Cheshkova K, Naydenov A, Georgesku V. React Kinet Catal Lett, 2002, 76: 287

    9. [9]

      [9] Dimitrova S, Ivanov G, Mehandjiev D. Appl Catal A, 2004, 266: 81

    10. [10]

      [10] Stoyanova M, Konova P, Nikolov P, Naydenov A, Christoskova St, Mehandjiev D. Chem Eng J, 2006, 122: 41

    11. [11]

      [11] Einaga H, Futamura S. J Catal, 2004, 227: 304

    12. [12]

      [12] Einaga H, Ogata A. J Hazard Mater, 2009, 164: 1236

    13. [13]

      [13] Einaga H, Futamura S. React Kinet Catal Lett, 2004, 81: 121

    14. [14]

      [14] Einaga H, Harada M, Ogata A. Catal Lett, 2009, 129: 422

    15. [15]

      [15] Mehandjiev D, Zhecheva E, Ivanov G, Ioncheva R. Appl Catal A, 1998, 167: 277

    16. [16]

      [16] Mehandjiev D, Naydenov A, Ivanov G. Appl Catal A, 2001, 206: 13

    17. [17]

      [17] Naydenov A, Stoyanova R, Mehandjiev D. J Mol Catal A, 1995, 98: 9

    18. [18]

      [18] Einaga H, Ogata A. Environ Sci Technol, 2010, 44: 2612

    19. [19]

      [19] Rezaei E, Soltan J. Chem Eng J, 2012, 198-199: 482

    20. [20]

      [20] Rezaei E, Soltan J, Chen N. Appl Catal B, 2013, 136-137: 239

    21. [21]

      [21] Rezaei E, Soltan J, Chen N, Lin J R. Chem Eng J, 2013, 214: 219

    22. [22]

      [22] Einaga H, Futamura S. J Catal, 2006, 243: 446

    23. [23]

      [23] Einaga H, Teraoka Y, Ogat A. Catal Today, 2011, 164: 571

    24. [24]

      [24] Zhao D Z, Shi C, Li X S, Zhu A M, Jang B W L. J Hazard Mater, 2012, 239-240: 362

    25. [25]

      [25] Wang M X, Zhang P Y, Li J G, Jiang C J. Chin J Catal (王鸣晓, 张彭义, 李金格, 姜传佳. 催化学报), 2014, 35: 335

    26. [26]

      [26] Wang M Y, Zhu T L, Fan X. Chin Environ Sci (王美艳, 朱天乐, 樊星. 中国环境科学), 2009, 29: 806

    27. [27]

      [27] Einaga H, Teraoka Y, Ogat A. J Catal, 2013, 305: 227

    28. [28]

      [28] Fan H Y, Shi C, Li X S, Zhao D Z, Xu Y, Zhu A M. J Phys D, 2009, 42: 225105

    29. [29]

      [29] Fan H Y, Li X S, Shi C, Zhao D Z, Liu J L, Liu Y X, Zhu A M. Plasma Chem Plasma Process, 2011, 31: 799

    30. [30]

      [30] Zhao D Z, Li X S, Shi C, Fan H Y, Zhu A M. Chem Eng Sci, 2011, 66: 3922

    31. [31]

      [31] Qu Z P, Bu Y B, Qin Y, Wang Y, Fu Q. Appl Catal B, 2013, 132-133: 353

    32. [32]

      [32] Bogdanchikova N, Meunier F C, Avalos-Borja M, Breen J P, Pestryakov A. Appl Catal B, 2002, 36: 287

    33. [33]

      [33] Shi C, Chen B B, Li X S, Crocker M, Wang Y, Zhu A M. Chem Eng J, 2012, 200-202: 729

    34. [34]

      [34] Ma F T, Lou H. Chin J Catal (马福泰, 楼辉. 催化学报), 1984, 5: 82

    35. [35]

      [35] Boot L A, Kerkhoffs M H J V, van der Linden B T, Jos van Dillen A, Geus J W, van Buren F R. Appl Catal A, 1996, 137: 69

    36. [36]

      [36] Dhandapani B, Oyama S T. Appl Catal B, 1997, 11: 129

    37. [37]

      [37] Oyama S T. Catal Rev-Sci Eng, 2000, 42: 279

    38. [38]

      [38] Wang H C, Chang S H, Hung P C, Hwang J F, Chang M B. J Hazard Mater, 2009, 164: 1452

    39. [39]

      [39] Radhakrishnan R, Oyama S T, Chen J G, Asakura K. J Phys Chem B, 2001, 105: 4245

    40. [40]

      [40] Wang H C, Chang S H, Hung P C, Hwang J F, Chang M B. Chemosphere, 2008, 71: 388

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(347)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return