Citation: Miao Jiang, Yunjie Ding, Li Yan, Xiangen Song, Ronghe Lin. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1456-1464. doi: 10.1016/S1872-2067(14)60068-1 shu

Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins

  • Corresponding author: Yunjie Ding, 
  • Received Date: 23 January 2014
    Available Online: 26 February 2014

  • Rh catalysts supported on knitting aryl network polymers (Rh/KAPs) were prepared for the hydroformylation of higher olefins. Rh catalysts supported on triphenylphosphine-benzene-base polymers (Rh/KAPs-1) showed higher activity for the higher olefins than Rh/SiO2 catalysts. Fourier transform infrared spectroscopy, thermogravimetry, N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, 13C NMR, and 31P NMR showed that the Rh/KAPs-1 catalysts have high thermal stability, high surface area, hierarchical porosity, highly dispersed Rh nanoparticles, and in situ formed homogeneous active species during the reaction.
  • 加载中
    1. [1]

      [1] Franke R, Selent D, Börner A. Chem Rev, 2012, 112: 5675

    2. [2]

      [2] Hebrard F, Kalck P. Chem Rev, 2009, 109: 4272

    3. [3]

      [3] Zeng Y, Wang Y H, Xu Y C, Song Y, Zhao J Q, Jiang J Y, Jin Z L. Chin J Catal (曾艳, 王艳华, 徐贻成, 宋颖, 赵家骐, 蒋景阳, 金子林. 催化学报), 2012, 33: 402

    4. [4]

      [4] Cole-Hamilton D J. Science, 2003, 299: 1702

    5. [5]

      [5] Maschmeyer T, Rey F, Sankar G, Thomas J M. Nature, 1995, 378: 159

    6. [6]

      [6] Neves Å C B, Calvete M J F, Pinho e Melo T M V D, Pereira M M. Eur J Org Chem, 2012, 2012: 6309

    7. [7]

      [7] Zhang J X, Huang G W, Zhang C, He Q H, Huang C, Yang X, Song H Y, Liang Z X, Du L, Liao S J. Chin J Catal (张嘉熙, 黄高伟, 张琤, 何群华, 黄超, 杨旭, 宋慧宇, 梁振兴, 杜丽, 廖世均. 催化学报), 2013, 34: 1519

    8. [8]

      [8] Li X F, Zhang W J, Zhang L M, Yang H Q. Chin J Catal (李晓菲, 张文娟, 张丽敏, 杨恒权. 催化学报), 2013, 34: 1192

    9. [9]

      [9] Zhang Y, Riduan S N. Chem Soc Rev, 2012, 41: 2083

    10. [10]

      [10] Liu Y, Lü Y C, Luo G S. Chin J Catal (刘莹, 吕阳成, 骆广生. 催化学报), 2013, 34: 1635

    11. [11]

      [11] Wu T B, Zhang P, Ma J, Fan H L, Wang W T, Jiang T, Han B X. Chin J Catal (吴天斌, 张鹏, 马珺, 樊红雷, 王伟涛, 姜涛, 韩布兴. 催化学报), 2013, 34: 167

    12. [12]

      [12] Wu D C, Xu F, Sun B, Fu R W, He H K, Matyjaszewski K. Chem Rev, 2012, 112: 3959

    13. [13]

      [13] Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Nat Commun, 2013, 4: 2960

    14. [14]

      [14] Chen X H, Qiao S L, Du Z K, Zhou Y H, Yang R Q. Macromol Rapid Commun, 2013, 34: 1181

    15. [15]

      [15] Chen L, Yang Y, Jiang D L. J Am Chem Soc, 2010, 132: 9138

    16. [16]

      [16] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J Am Chem Soc, 2011, 133: 19816

    17. [17]

      [17] Li B Y, Gong R N, Wang W, Huang X, Zhang W, Li H M, Hu C X, Tan B. Macromolecules, 2011, 44: 2410

    18. [18]

      [18] Li B Y, Guan Z H, Wang W, Yang X J, Hu J L, Tan B, Li T. Adv Mater, 2012, 24: 3390

    19. [19]

      [19] Dawson R, Stevens L A, Drage T C, Snape C E, Smith M W, Adams D J, Cooper A I. J Am Chem Soc, 2012, 134: 10741

    20. [20]

      [20] Luo Y L, Li B Y, Wang W, Wu K B, Tan B. Adv Mater, 2012, 24: 5703

    21. [21]

      [21] He W H, Zhang F, Li H. Chem Sci, 2011, 2: 961

    22. [22]

      [22] Mukhopadhyay K, Mandale A B, Chaudhari R V. Chem Mater, 2003, 15: 1766

    23. [23]

      [23] Walczuk E B, Kamer P C J, van Leeuwen P W N M. Angew Chem Int Ed, 2003, 42: 4665

    24. [24]

      [24] Gerritsen L A, Van Meerkerk A, Vreugdenhil M H, Scholten J J F. J Mol Catal, 1980, 9: 139

    25. [25]

      [25] Yan L, Ding Y J, Zhu H J, Xiong J M, Wang T, Pan Z D, Lin L W. J Mol Catal A, 2005, 234: 1

    26. [26]

      [26] Zhu H J, Ding Y J, Yin H M, Yan L, Xiong J M, Lu Y, Luo H Y, Lin L W. Appl Catal A, 2003, 245: 111

    27. [27]

      [27] Yan L, Ding Y J, Lin L W, Zhu H J, Yin H M, Li X M, Lu Y. J Mol Catal A, 2009, 300: 116

    28. [28]

      [28] Li X M, Ding Y J, Jiao G P, Li J W, Lin R H, Gong L F, Yan L, Zhu H J. Appl Catal A, 2009, 353: 266

    29. [29]

      [29] Li X M, Ding Y J, Jiao G P, Li J W, Yan L, Zhu H J. Chin J Catal (李显明, 丁云杰, 焦桂平, 李经伟, 严丽, 朱何俊. 催化学报), 2008, 29: 1193

    30. [30]

      [30] Yan L, Ding Y J, Liu J, Zhu H J, Lin L W. Chin J Catal (严丽, 丁云杰, 刘佳, 朱何俊, 林励吾. 催化学报), 2011, 32: 31

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(0)
  • Abstract views(306)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return