Citation:
	            
		            Jingjun  Liu, Xuemin  Jin, Weiwei  Song, Feng  Wang, Nan  Wang, Ye  Song. Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction[J]. Chinese Journal of Catalysis,
							;2014, 35(7): 1173-1188.
						
							doi:
								10.1016/S1872-2067(14)60066-8
						
					
				
					
				
	        
- 
	                	Covalent coupling between LaMnO3 nanoparticles and carbon black to produce a composite catalyst for oxygen reduction reaction (ORR) was achieved by physical mixing of modified carbon and perovskite-type LaMnO3 nanoparticles, followed by sintering at different temperatures. Perovskite-type LaMnO3 nanoparticles were first synthesized via chemical precipitation, and the carbon support (Vulcan XC-72) was modified using graphitization, followed by HNO3 and ammonia treatments. The morphology and electronic states of the carbon black-LaMnO3 hybrid catalyst were characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The loaded LaMnO3 particles featured rod-like, three bars-like, and bamboo rod-like structures and were homogeneously dispersed in the carbon matrix that featured a hollow spherical structure. At a sintering temperature of about 300℃, C-O-M (M=La, Mn) bonds formed at the interface between the carbon and LaMnO3 nanoparticles. Electrochemical measurements in 1 mol/L NaOH showed that the carbon-LaMnO3 hybrid prepared at a LaMnO3/GCB mass ratio of 2:3 displayed the highest electrocatalytic activity towards ORR among all the synthesized hybrid catalysts. The electrocatalytic activity was comparable with that obtained by commercial Pt/C catalyst (E-TEK). The average electron transfer number of ORR was ~3.81, and the corresponding yield of the hydrogen peroxide intermediatewas ~9.5%. The remarkably improved electrocatalytic activity towards ORR was likely because of the formation of covalent bonds (C-O-M) between the LaMnO3 nanoparticles and carbon that can effectively enhance the ORR kinetics. This information is important to understand the physical origin of the electrocatalytic activity of carbon-supported rare earth oxides as catalysts for ORR.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Arico A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133
 - 
			
                    [2]
                
			
[2] Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315: 493
 - 
			
                    [3]
                
			
[3] Li S, Zhu G W, Qiu P, Rong G, Pan M. Chin J Catal (李赏, 朱广文, 邱鹏, 荣刚, 潘牧. 催化学报), 2011, 32: 624
 - 
			
                    [4]
                
			
[4] Rajesh B, Piotr Z. Nature, 2006, 443: 63
 - 
			
                    [5]
                
			
[5] Neburchilov V, Wang H J, Martin J J, Qu W. J Power Sources, 2010, 195: 1271
 - 
			
                    [6]
                
			
[6] Roche I, Chaınet E, Chatenet M, Vondrak J. J Phys Chem C, 2007, 111: 1434
 - 
			
                    [7]
                
			
[7] Lian Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Nature Mater, 2011, 1038: 3087
 - 
			
                    [8]
                
			
[8] Yang Z, Zhou X M, Nie H G, Yao Z, Huang S M. ACS Appl Mater Interfaces, 2011, 3: 2601
 - 
			
                    [9]
                
			
[9] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760
 - 
			
                    [10]
                
			
[10] Wang S Y, Yu D S, Dai L M. J Am Chem Soc, 2011, 133: 5182
 - 
			
                    [11]
                
			
[11] Bao X H. Sci China Ser B (包信和. 中国科学B辑), 2009, 39: 1125
 - 
			
                    [12]
                
			
[12] Kou R, Shao Y Y, Mei D H, Nie Z M, Wang D H, Wang C M, Viswanathan V V, Park S, Aksay I A, Lin Y H, Wang Y, Liu J. J Am Chem Soc, 2011, 133: 2541
 - 
			
                    [13]
                
			
[13] Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051
 - 
			
                    [14]
                
			
[14] Cyganiuk A, Klimkiewicz R, Olejniczak A, Lukaszewicz J P. Carbon, 2010, 48: 99
 - 
			
                    [15]
                
			
[15] Cyganiuk A, Klimkiewicz R, Lukaszewicz J P. Mater Res Bull, 2011, 46: 327
 - 
			
                    [16]
                
			
[16] Shao Y Y, Yin G P, Gao Y Z, Shi P F. J Electrochem Soc, 2006, 153: 1093
 - 
			
                    [17]
                
			
[17] Li Z R, Little R, Dervishi E, Saini V, Xu Y, Biris A R, Lupa D, Trigwell S, Saini D, Biris A S. Chem Phys, 2008, 353: 25
 - 
			
                    [18]
                
			
[18] Yoshida A, Kaburagi Y, Hishiyama Y. Carbon, 2006, 44: 2333
 - 
			
                    [19]
                
			
[19] Gu J W, Zhao T S, Prabhuram J, Wang C W. Electrochim Acta, 2005, 50: 1973
 - 
			
                    [20]
                
			
[20] Terzyk A P. Colloids Surf A, 2001, 177: 23
 - 
			
                    [21]
                
			
[21] Zhou J S, Song H H, Ma L L, Chen X H. RSC Adv, 2011, 1: 782
 - 
			
                    [22]
                
			
[22] Santos L G R A, Freitas K S, Ticianelli E A. Electrochim Acta, 2009, 54: 5246
 - 
			
                    [23]
                
			
[23] Wang S L, Ma Y, Wang X L. Shandong Univ (王世励, 马英, 王雪琳. 山东大学学报), 1979, (4): 66
 - 
			
                    [24]
                
			
[24] Yeager E. Electrochim Acta, 1984, 29: 1527
 - 
			
                    [25]
                
			
[25] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzji G, Garfunkel E, Chhowalla M. Adv Funct Mater, 2009, 19: 2577
 - 
			
                    [26]
                
			
[26] Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Nat Chem, 2010, 2: 581
 - 
			
                    [27]
                
			
[27] Kim U J, Furtado C A, Liu X M, Chen G G, Eklund P C. J Am Chem Soc, 2005, 127: 15437
 - 
			
                    [28]
                
			
[28] Russo N, Fino D, Saracco G, Specchia V. J Catal, 2005, 229: 459
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
 - 
				[2]
				
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
 - 
				[3]
				
Qianqian ZHU , Lihui XU , Hong PAN , Chengjian YAO , Hong ZHAO , Nan MA , Xiaolin SHI , Zihan SHEN , Weijun ZHANG , Zhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040
 - 
				[4]
				
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
 - 
				[5]
				
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
 - 
				[6]
				
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
 - 
				[7]
				
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
 - 
				[8]
				
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
 - 
				[9]
				
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
 - 
				[10]
				
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
 - 
				[11]
				
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
 - 
				[12]
				
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
 - 
				[13]
				
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
 - 
				[14]
				
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
 - 
				[15]
				
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
 - 
				[16]
				
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
 - 
				[17]
				
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
 - 
				[18]
				
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
 - 
				[19]
				
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
 - 
				[20]
				
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(755)
 - HTML views(41)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: