Citation:
Jingjun Liu, Xuemin Jin, Weiwei Song, Feng Wang, Nan Wang, Ye Song. Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction[J]. Chinese Journal of Catalysis,
;2014, 35(7): 1173-1188.
doi:
10.1016/S1872-2067(14)60066-8
-
Covalent coupling between LaMnO3 nanoparticles and carbon black to produce a composite catalyst for oxygen reduction reaction (ORR) was achieved by physical mixing of modified carbon and perovskite-type LaMnO3 nanoparticles, followed by sintering at different temperatures. Perovskite-type LaMnO3 nanoparticles were first synthesized via chemical precipitation, and the carbon support (Vulcan XC-72) was modified using graphitization, followed by HNO3 and ammonia treatments. The morphology and electronic states of the carbon black-LaMnO3 hybrid catalyst were characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The loaded LaMnO3 particles featured rod-like, three bars-like, and bamboo rod-like structures and were homogeneously dispersed in the carbon matrix that featured a hollow spherical structure. At a sintering temperature of about 300℃, C-O-M (M=La, Mn) bonds formed at the interface between the carbon and LaMnO3 nanoparticles. Electrochemical measurements in 1 mol/L NaOH showed that the carbon-LaMnO3 hybrid prepared at a LaMnO3/GCB mass ratio of 2:3 displayed the highest electrocatalytic activity towards ORR among all the synthesized hybrid catalysts. The electrocatalytic activity was comparable with that obtained by commercial Pt/C catalyst (E-TEK). The average electron transfer number of ORR was ~3.81, and the corresponding yield of the hydrogen peroxide intermediatewas ~9.5%. The remarkably improved electrocatalytic activity towards ORR was likely because of the formation of covalent bonds (C-O-M) between the LaMnO3 nanoparticles and carbon that can effectively enhance the ORR kinetics. This information is important to understand the physical origin of the electrocatalytic activity of carbon-supported rare earth oxides as catalysts for ORR.
-
-
-
[1]
[1] Arico A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133
-
[2]
[2] Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315: 493
-
[3]
[3] Li S, Zhu G W, Qiu P, Rong G, Pan M. Chin J Catal (李赏, 朱广文, 邱鹏, 荣刚, 潘牧. 催化学报), 2011, 32: 624
-
[4]
[4] Rajesh B, Piotr Z. Nature, 2006, 443: 63
-
[5]
[5] Neburchilov V, Wang H J, Martin J J, Qu W. J Power Sources, 2010, 195: 1271
-
[6]
[6] Roche I, Chaınet E, Chatenet M, Vondrak J. J Phys Chem C, 2007, 111: 1434
-
[7]
[7] Lian Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Nature Mater, 2011, 1038: 3087
-
[8]
[8] Yang Z, Zhou X M, Nie H G, Yao Z, Huang S M. ACS Appl Mater Interfaces, 2011, 3: 2601
-
[9]
[9] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760
-
[10]
[10] Wang S Y, Yu D S, Dai L M. J Am Chem Soc, 2011, 133: 5182
-
[11]
[11] Bao X H. Sci China Ser B (包信和. 中国科学B辑), 2009, 39: 1125
-
[12]
[12] Kou R, Shao Y Y, Mei D H, Nie Z M, Wang D H, Wang C M, Viswanathan V V, Park S, Aksay I A, Lin Y H, Wang Y, Liu J. J Am Chem Soc, 2011, 133: 2541
-
[13]
[13] Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051
-
[14]
[14] Cyganiuk A, Klimkiewicz R, Olejniczak A, Lukaszewicz J P. Carbon, 2010, 48: 99
-
[15]
[15] Cyganiuk A, Klimkiewicz R, Lukaszewicz J P. Mater Res Bull, 2011, 46: 327
-
[16]
[16] Shao Y Y, Yin G P, Gao Y Z, Shi P F. J Electrochem Soc, 2006, 153: 1093
-
[17]
[17] Li Z R, Little R, Dervishi E, Saini V, Xu Y, Biris A R, Lupa D, Trigwell S, Saini D, Biris A S. Chem Phys, 2008, 353: 25
-
[18]
[18] Yoshida A, Kaburagi Y, Hishiyama Y. Carbon, 2006, 44: 2333
-
[19]
[19] Gu J W, Zhao T S, Prabhuram J, Wang C W. Electrochim Acta, 2005, 50: 1973
-
[20]
[20] Terzyk A P. Colloids Surf A, 2001, 177: 23
-
[21]
[21] Zhou J S, Song H H, Ma L L, Chen X H. RSC Adv, 2011, 1: 782
-
[22]
[22] Santos L G R A, Freitas K S, Ticianelli E A. Electrochim Acta, 2009, 54: 5246
-
[23]
[23] Wang S L, Ma Y, Wang X L. Shandong Univ (王世励, 马英, 王雪琳. 山东大学学报), 1979, (4): 66
-
[24]
[24] Yeager E. Electrochim Acta, 1984, 29: 1527
-
[25]
[25] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzji G, Garfunkel E, Chhowalla M. Adv Funct Mater, 2009, 19: 2577
-
[26]
[26] Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Nat Chem, 2010, 2: 581
-
[27]
[27] Kim U J, Furtado C A, Liu X M, Chen G G, Eklund P C. J Am Chem Soc, 2005, 127: 15437
-
[28]
[28] Russo N, Fino D, Saracco G, Specchia V. J Catal, 2005, 229: 459
-
[1]
-
-
-
[1]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[2]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[3]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[4]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[5]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[6]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[7]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[8]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[11]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[12]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[13]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[14]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[15]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[18]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[19]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[20]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(538)
- HTML views(27)