Citation: Mohsen Keyvanfard, Rasoul Salmani-mobarakeh, Hassan Karimi-Maleh, Khadijeh Alizad. Application of 3,4-dihydroxycinnamic acid as a suitable mediator and multiwall carbon nanotubes as a sensor for the electrocatalytic determination of L-cysteine[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1166-1172. doi: 10.1016/S1872-2067(14)60065-6 shu

Application of 3,4-dihydroxycinnamic acid as a suitable mediator and multiwall carbon nanotubes as a sensor for the electrocatalytic determination of L-cysteine

  • Corresponding author: Mohsen Keyvanfard,  Hassan Karimi-Maleh, 
  • Received Date: 9 November 2013
    Available Online: 28 February 2014

  • A highly sensitive electrochemical sensor was prepared for the determination of L-cysteine using a modified multiwall carbon nanotubes paste electrode in the presence of 3,4-dihydroxycinnamic acid (3,4-DHCA) as a mediator, based on an electrocatalytic process. The results indicate that the electrode is electrocatalytically efficient for the oxidation of L-cysteine in the presence of 3,4-DHCA. The interaction between the mediator and L-cysteine can be used for its sensitive and selective determination. Using chronoamperometry, the catalytic reaction rate constant was calculated to be 2.37×102 mol-1 L s-1. The catalytic peak current was linearly dependent on the L-cysteine concentration in the range of 0.4-115 μmol/L. The detection limit obtained by linear sweep voltammetry was 0.25 μmol/L. Finally, the modified electrode was examined as a selective, simple, and precise new electrochemical sensor for the determination of L-cysteine in real samples.
  • 加载中
    1. [1]

      [1] The Primary Structure Of Proteins Is the Amino Acid Sequence. The Microbial World. University of Wisconsin-Madison Bacteriology Department. Retrieved 16 September 2012.

    2. [2]

      [2] Kazemi S, Karimi-Maleh H, Hosseinzadeh R, Faraji F. Ionics, 2013, 19: 933

    3. [3]

      [3] Chwatko G, Bald E. Talanta, 2000, 52: 509

    4. [4]

      [4] Friedman M, Krull L H, Cavins J F. J Biolog Chem, 1970, 245: 3868

    5. [5]

      [5] Saetre R, Rabenstein D L. Anal Biochem, 1978, 90: 684

    6. [6]

      [6] Jin W R, Wang Y. J Chromatog A, 1997, 769: 307

    7. [7]

      [7] Chrastil J. Analyst, 1990, 115: 1383

    8. [8]

      [8] Gaitonde M K. Biochem J, 1967, 104: 627

    9. [9]

      [9] Wu F Y, Liao W S, Wu Y M, Wan X F. Spect Lett, 2008, 41: 393

    10. [10]

      [10] Giljanović J, Brkljača M, Prkić A. Molecules, 2011, 16: 7224

    11. [11]

      [11] Nie L H, Ma H M, Sun M, Li X H, Su M H, Liang S C. Talanta, 2003, 59: 959

    12. [12]

      [12] Ensafi A A, Dadkhah-Tehrani S, Karimi-Maleh H. Anal Sci, 2011, 27: 409

    13. [13]

      [13] Amini M K, Khorasani J H, Khaloo S S, Tangestaninejad S. Anal Biochem, 2003, 320: 32

    14. [14]

      [14] Perevezentseva D O, Gorchakov E V. J Solid State Electrochem, 2012, 16: 2405

    15. [15]

      [15] Ahmad M, Pan C F, Zhu J. J Mater Chem, 2010, 20: 7169

    16. [16]

      [16] Ensafi A A, Karimi-Maleh H. J Electroanal Chem, 2010, 640: 75

    17. [17]

      [17] Ensafi A A, Bahrami H, Karimi-Maleh H, Mallakpour S. Chin J Catal (催化学报), 2012, 33: 1919

    18. [18]

      [18] Ensafi A A, Lotfi M, Karimi-Maleh H. Chin J Catal (催化学报), 2012, 33: 487

    19. [19]

      [19] Tavana T, Khalilzadeh M A, Karimi-Maleh H, Ensafi A A, Beitollahi H, Zareyee D. J Mol Liq, 2012, 168: 69

    20. [20]

      [20] Karimi-Maleh H, Biparva P, Hatami M. Biosens Bioelect, 2013, 48: 270

    21. [21]

      [21] Elyasi M, Khalilzadeh M A, Karimi-Maleh H. Food Chem, 2013, 141: 4311

    22. [22]

      [22] Beitollah H, Goodarzian M, Khalilzadeh M A, Karimi-Maleh H, Hassanzadeh M, Tajbakhsh M. J Mol Liq, 2012, 173: 137

    23. [23]

      [23] Keyvanfard M, Khosravi V, Karimi-Maleh H, Alizad K, Rezaei B. J Mol Liq, 2013, 177: 182

    24. [24]

      [24] Keyvanfard M, Shakeri R, Karimi-Maleh H, Alizad K. Mater Sci Eng C, 2013, 33: 811

    25. [25]

      [25] Ensafi A A, Karimi-Maleh H, Keyvanfard M. Int J Environ Anal Chem, 2013, 93: 650

    26. [26]

      [26] Moradi R, Sebt S A, Karimi-Maleh H, Sadeghi R, Karimi F, Bahari A, Arabi H. Phys Chem Chem Phys, 2013, 15: 5888

    27. [27]

      [27] Keyvanfard M, Ensafi A A, Karimi-Maleh H. J Solid State Electrochem, 2012, 16: 2949

    28. [28]

      [28] Karimi-Maleh H, Keyvanfard M, Alizad K, Khosravi V, Asnaashariisfahani M. Int J Electrochem Sci, 2012, 7: 6816

    29. [29]

      [29] Mokhtari A, Karimi-Maleh H, Ensafi A A, Beitollahi H. Sens Actuators B, 2012, 169: 96

    30. [30]

      [30] Roodbari Shahmiri M, Bahari A, Karimi-Maleh H, Hosseinzadeh R, Mirnia N. Sens Actuators B, 2013, 177: 70

    31. [31]

      [31] Karimi-Maleh H, Ensafi A A, Allafchian A R. J Solid State Electrochem, 2010, 14: 9

    32. [32]

      [32] Ma X Y, Chao M Y. Anal Methods, 2013, 5: 5823

    33. [33]

      [33] Mirmomtaz E, Ensafi A A, Karimi-Maleh H. Electroanalysis, 2008, 20: 1973

    34. [34]

      [34] Rafiee B, Fakhari A R. Biosens Bioelect, 2013, 46: 130

    35. [35]

      [35] Galus Z. Fundumentals of Electrochemical Analysis. New York: Ellis Horwood, 1976

    36. [36]

      [36] Raoof J B, Ojani R, Karimi-Maleh H. Electroanalysis, 2008, 20: 1259

    37. [37]

      [37] Ensafi A A, Karimi-Maleh H, Mallakpour S, Hatami M. Sens Actuators B, 2011, 155: 464

    38. [38]

      [38] Ensafi A A, Karimi-Maleh H, Mallakpour S, Rezaei B. Colloids Surf B, 2011, 87: 480

    39. [39]

      [39] Keyvanfard M, Karimi-Maleh H, Alizad K. Chin J Catal (催化学报), 2013, 34: 1883

    40. [40]

      [40] Afzali D, Karimi-Maleh H, Khalilzadeh M A. Environ Chem Lett, 2011, 9: 375

    41. [41]

      [41] Ensafi A A, Karimi-Maleh H, Ghiaci M, Arshadi M. J Mater Chem, 2011, 21: 15022

    42. [42]

      [42] Ensafi A A, Dadkhah-Tehrani S, Karimi-Maleh H. Anal Sci, 2011, 27: 409

    43. [43]

      [43] Ensafi A A, Karimi-Maleh H, Mallakpour S. Electroanalysis, 2011, 23: 1478

    44. [44]

      [44] Taheri A R, Mohadesi A, Afzali D, Karimi-Maleh H, Moghaddam H M, Zamani H, Zad Z R. Int J Electrochem Sci, 2011, 6: 171

  • 加载中
    1. [1]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    8. [8]

      Sixin AiWenxiu LiHuayong ZhuYang WanWeiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904

    9. [9]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    10. [10]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    11. [11]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    14. [14]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    18. [18]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    19. [19]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    20. [20]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

Metrics
  • PDF Downloads(0)
  • Abstract views(485)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return