Citation: Xiaochuan Zou, Kaiyun Shi, Cun Wang. Chiral Mn(Salen) supported on tunable phenoxyl group modified zirconium poly (styrene-phenylvinylphosphonate)-phosphate as an efficient catalyst for epoxidation of unfunctionalized olefins[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1446-1455. doi: 10.1016/S1872-2067(14)60064-4 shu

Chiral Mn(Salen) supported on tunable phenoxyl group modified zirconium poly (styrene-phenylvinylphosphonate)-phosphate as an efficient catalyst for epoxidation of unfunctionalized olefins

  • Corresponding author: Xiaochuan Zou, 
  • Received Date: 30 January 2014
    Available Online: 21 February 2014

    Fund Project:

  • We have developed a series of chiral Mn(Salen) (chiral Jacobsen's catalyst) catalysts that were axially supported onto zirconium poly(styrene-phenylvinylphosphonate)-phosphate through tunable phenoxyl linkers of varying steric hindrance, and evaluated their performance as catalysts (Cat1-Cat3) for the epoxidation of unfunctionalized olefins using m-chloroperbenzoic acid as an oxidant. The corresponding non-supported analogues (Cat4-Cat6) were also prepared and tested under similar conditions. The results demonstrated that the incorporation of substituents at the ortho-positions of the tunable phenoxyl linkers had a critical effect on the catalytic activity. Furthermore, the enantioselectivity increased as the steric hindrance imposed by the linker increased, although this also led to a decrease in the conversions under the same reaction conditions, especially for heterogeneous epoxidation. The heterogeneous system also displayed high ee values and conversions in the absence of the axial additive N-methylmorpholine N-oxide, which is commonly required to improve the catalytic activity of epoxidation reactions, especially for the epoxidation of α-methylstyrene. The reusability of the catalyst was also evaluated over 11 catalytic cycles, with no significant reduction observed in the catalytic activity or enantioselectivity after five runs.
  • 加载中
    1. [1]

      [1] Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N. Science, 2003, 300: 964

    2. [2]

      [2] Zhang W, Loebach J L, Wilson S R, Jacobsen E N. J Am Chem Soc, 1990, 112: 2801

    3. [3]

      [3] Heitbaum M, Glorius F, Escher I. Angew Chem Int Ed, 2006, 45: 4732.

    4. [4]

      [4] Baleizo C, Garcia H. Chem Rev, 2006, 106: 3987

    5. [5]

      [5] Fraile J M, Garcia J I, Mayoral J A. Chem Rev, 2009, 109: 360

    6. [6]

      [6] Xu G J, Wei S L, Fan Y G, Zhu L B, Tang Y H, Zheng Y S. Chin J Catal (徐国津, 魏赛丽, 樊颖果, 朱丽波, 唐玉海, 郑元锁. 催化学报), 2012, 33: 473

    7. [7]

      [7] Breinbauer R, Jacobsen E N. Angew Chem Int Ed, 2000, 39: 3604

    8. [8]

      [8] Tian P, Gao B J, Chen Y J. Chin J Catal (田鹏, 高保娇, 陈英军. 催化学报), 2011, 32: 483

    9. [9]

      [9] Notestein J M, Katz A. Chem Eur J, 2006, 12: 3954

    10. [10]

      [10] Ye Y J, Huang J W, Cai J H, Wu W H, Yu H C, Zhou X T, Ji H B, Ji H N. Chin J Catal (叶元坚, 黄锦汪, 蔡金华, 吴文海, 余汉城, 周贤太, 纪红兵, 计亮年. 催化学报), 2010, 31: 1507

    11. [11]

      [11] Zheng X L, Jones C W, Weck M. J Am Chem Soc, 2007, 129: 1105

    12. [12]

      [12] White D E, Jacobsen E N. Tetrahedron: Asymmetry, 2003, 14: 3633

    13. [13]

      [13] Bai R F, Fu X K, Bao H B, Ren W S. Catal Commun, 2008, 9: 1588

    14. [14]

      [14] Ren W S, Fu X K, Bao H B, Bai R F, Ding P P, Sui B L. Catal Commun, 2009, 10: 788

    15. [15]

      [15] Ren W S, Fu X K. J Mol Catal A, 2009, 312: 40

    16. [16]

      [16] Zou X C, Shi K Y, Chen S C, Fu X K. Chem J Chin Univ (邹晓川, 石开云, 陈绍成, 傅相锴. 高等学校化学学报), 2013, 34: 2319

    17. [17]

      [17] Zou X C, Chen S C, Ren Y R, Shi K Y, Li J, Fu X K. Sci China Chem, 2012, 55: 2396

    18. [18]

      [18] Gong B W, Fu X K, Chen J X, Li Y D, Zou X C, Tu X B, Ma L P. J Catal, 2009, 262: 9

    19. [19]

      [19] Zou X C, Fu X K, Li Y D, Tu X B, Fu S D, Luo Y F, Wu X J. Adv Synth Catal, 2010, 352: 163

    20. [20]

      [20] Palucki M, Pospisil P J, Zhang W, Jacobsen E N. J Am Chem Soc, 1994, 116: 9333

    21. [21]

      [21] Nowak D M, Lansbury P T. Tetrahedron, 1998, 54: 319

    22. [22]

      [22] Palucki M, McCormick G J, Jacobsen E N. Tetrahedron Lett, 1995, 36: 5457

    23. [23]

      [23] Wang D P, Wang M, Wang X N, Chen Y G, Gao A P, Sun L C. J Catal, 2006, 237: 248

    24. [24]

      [24] Kureshy R I, Ahamd I, Khan N H, Abdi S H R, Singh S, Pandia P H, Jasra R V. J Catal, 2005, 235: 28

    25. [25]

      [25] Malek K, Li C, van Santen R A. J Mol Catal A, 2007, 271: 98

    26. [26]

      [26] Zheng X L, Jones C W, Weck M. Adv Synth Catal, 2008, 350: 255

    27. [27]

      [27] Minutolo F, Pini D, Petri A, Salvadori P. Tetrahedron: Asymmetry, 1996, 7: 2293

    28. [28]

      [28] Zhang H D, Zhang Y M, Li C. Tetrahedron: Asymmetry, 2005, 16: 2417

    29. [29]

      [29] Xiang S, Zhang Y L, Xin Q, Li C. Chem Commun, 2002: 2696.

    30. [30]

      [30] Zhang H D, Xiang S, Li C. Chem Commun, 2005: 1209

    31. [31]

      [31] Lou L L, Yu K, Ding F, Peng X J, Dong M M, Zhang C, Liu S X. J Catal, 2007, 249: 102

    32. [32]

      [32] Domenech A, Formentin P, Garcia H, Sabater M J. Eur J Inorg Chem, 2000:1339

    33. [33]

      [33] Li Z, Xia C G, Zhang X M. J Mol Catal A, 2002, 185: 47

    34. [34]

      [34] Han D F, Yang Q H, Li C. Chin J Catal (韩涤非, 杨启华, 李灿. 催化学报), 2008, 29: 789

    35. [35]

      [35] Liao S H, List B. Angew Chem Int Ed, 2010, 49: 628

    36. [36]

      [36] Huang X M, Fu X K, Wu X J, Jia Z Y. Tetrahedron Lett, 2013, 54: 4041

    37. [37]

      [37] Jacobsen E N, Zhang W, Muci A R, Ecker J R, Deng L. J Am Chem Soc, 1991, 113: 7063

    38. [38]

      [38] Hosoya N, Hatayama A, Irie R, Sasaki H, Katsuki T. Tetrahedron, 1994, 50: 4311

  • 加载中
    1. [1]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    14. [14]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(260)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return