Citation: Petr Kutálek, Libor Čapek, Lucie Smoláková, David Kubička, Martin Hájek. Aspects of stability of K/Al2O3 catalysts for the transesterification of rapeseed oil in batch and fixed-bed reactors[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1084-1090. doi: 10.1016/S1872-2067(14)60054-1 shu

Aspects of stability of K/Al2O3 catalysts for the transesterification of rapeseed oil in batch and fixed-bed reactors

  • Corresponding author: Libor Čapek, 
  • Received Date: 28 November 2013
    Available Online: 23 January 2014

  • Catalytically active, stable, and mechanically durable solid K/Al2O3 catalysts for the transesterification of rapeseed oil with methanol was studied. In a batch reactor, high catalytic activity was accompanied by leaching of K species, caused by glycerol, and mechanical destruction of the solid catalyst as a result of contact with the stirrer. In a fixed-bed reactor, some leaching of K species into the liquid phases was also observed, but approached 0 during 30 h of time-on-stream; the activity of the K/Al2O3 catalyst (~83% ester yield) was stable for 100 h of time-on-stream and no mechanical destruction of the catalyst was observed. The populations of K2O and K-O-Al species for fresh and used K/Al2O3 catalysts were compared using Fourier transform infrared spectroscopy. It was found that some K2O species leached into the liquid phases at the beginning of the reaction.
  • 加载中
    1. [1]

      [1] Borges M E, Diaz L. Renew Sust Energ Rev, 2012, 16: 2839

    2. [2]

      [2] Shin J, Kim H, Hong S G, Kwon S, Na Y E, Bae S H, Park W K, Kang K K. Korean J Chem Eng, 2012, 29: 460

    3. [3]

      [3] Helwani Z, Othman M R, Aziz N, Fernando W J N, Kim J. Fuel Process Technol, 2009, 90: 1502

    4. [4]

      [4] Lam M K, Lee K T, Mohamed A R. Biotechnol Adv, 2010, 28: 500

    5. [5]

      [5] Sivasamy A, Cheah K Y, Fornasiero P, Kemausuor F, Zinoviev S, Miertus S. ChemSusChem, 2009, 2: 278

    6. [6]

      [6] Lee D W, Park Y M, Lee K Y. Catal Surv Asia, 2009, 13: 63

    7. [7]

      [7] Ebiura T, Echizen T, Ishikawa A, Murai K, Baba T. Appl Catal A, 2005, 283: 111

    8. [8]

      [8] Alonso D M, Mariscal R, Moreno-Tost R, Poves M D Z, Granados M L. Catal Commun, 2007, 8: 2074

    9. [9]

      [9] Boz N, Degirmenbasi N, Kalyon D M. Appl Catal B, 2009, 89: 590

    10. [10]

      [10] Teng G Y, Gao L J, Xiao G M, Liu H. Energ Fuel, 2009, 23: 4630

    11. [11]

      [11] Isahak W N R W, Ismail M, Jahim J M, Salimon J, Yarmo M A. Chem Pap, 2012, 66: 178

    12. [12]

      [12] Agarwal M, Chauhan G, Chaurasia S P, Singh K. J Taiwan Inst Chem Eng, 2012, 43: 89

    13. [13]

      [13] Xie W L, Peng H, Chen L G. Appl Catal A, 2006, 300: 67

    14. [14]

      [14] Vyas A P, Subrahmanyam N, Patel P A. Fuel, 2009, 88: 625

    15. [15]

      [15] Qiu P, Yang B L, Yi C H, Qi S T. Catal Lett, 2010, 137: 232

    16. [16]

      [16] Lukic I, Krstic J, Jovanovic D, Skala D. Bioresource Technol, 2009, 100: 4690

    17. [17]

      [17] Chen Y H, Huang Y H, Lin R H, Shang N C, Chang C Y, Chang C C, Chiang P C, Hu C Y. J Taiwan Inst Chem Eng, 2011, 42: 937

    18. [18]

      [18] Ma H B, Li S F, Wang B Y, Wang R H, Tian S J. J Am Oil Chem Soc, 2008, 85: 263

    19. [19]

      [19] Capek L, Hajek M, Kutalek P, Smolakova L. Fuel, 2014, 115: 443

    20. [20]

      [20] Verziu M, Florea M, Simon S, Simon V, Filip P, Parvulescu V I, Hardacre C. J Catal, 2009, 263: 56

    21. [21]

      [21] Wen L B, Wang Y, Lu D L, Hu S Y, Han H Y. Fuel, 2010, 89: 2267

    22. [22]

      [22] Furuta S, Matsuhashi H, Arata K. Catal Commun, 2004, 5: 721

    23. [23]

      [23] Cernoch M, Hajek M, Skopal F. Bioresource Technol, 2010, 101: 1213

    24. [24]

      [24] Alonso D M, Mariscal R, Moreno-Tost R, Poves M D Z, Granados M L. Catal Commun, 2007, 8: 2074

    25. [25]

      [25] Di Serio M, Mallardo S, Carotenuto G, Tesser R, Santacesaria E. Catal Today, 2012, 195: 54

    26. [26]

      [26] Sankaranarayanan T M, Pandurangan A, Banu M, Sivasanker S. Appl Catal A, 2011, 409-410: 239

    27. [27]

      [27] Sherstyuk O V, Ivanova A S, Lebedev M Y, Bukhtiyarova M V, Matvienko L G, Budneva A A, Simonov A N, Yakovlev V A. Appl Catal A, 2012, 419-420: 73

    28. [28]

      [28] Melero J A, Bautista L F, Iglesias J, Morales G, Sanchez-Vazquez R. Appl Catal B, 2014, 145: 197

    29. [29]

      [29] Buasri A, Chaiyut N, Loryuenyong V, Rodklum C, Chaikwan T, Kumphan N, Jadee K, Klinklom P, Wittayarounayut W. Sci Asia, 2012, 38: 283

    30. [30]

      [30] Furuta S, Matsuhashi H, Arata K. Biomass Bioenerg, 2006, 30: 870

    31. [31]

      [31] Liu H, Su L Y, Liu F F, Li C, Solomon U U. Appl Catal B, 2011, 106: 550

    32. [32]

      [32] Xie W L, Li H T. J Mol Catal A, 2006, 255: 1

    33. [33]

      [33] Li X S, Yu D H, Zhang W G, Li Z W, Zhang X W, Huang H. Appl Catal A, 2013, 455: 1

    34. [34]

      [34] Murugan C, Bajaj H C, Jasra R V. Catal Lett, 2010, 137: 224

    35. [35]

      [35] Fernandez-Carrasco L, Vazquez E. Fuel, 2009, 88: 1533

    36. [36]

      [36] Islam A, Taufiq-Yap Y H, Chu C M, Ravindra P, Chan E S. Renew Energy, 2013, 59: 23

    37. [37]

      [37] Wu X, Leung D Y C. Appl Energ, 2011, 88: 3615Intarapong P, Iangthanarat S, Phanthong P, Luengnaruemitchai A, Jai-In S. J Energy Chem, 2013, 22: 690

  • 加载中
    1. [1]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    2. [2]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    3. [3]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    4. [4]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    5. [5]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    6. [6]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    7. [7]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    8. [8]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    9. [9]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    10. [10]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    11. [11]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    12. [12]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    13. [13]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    14. [14]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    15. [15]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    16. [16]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    17. [17]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    20. [20]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

Metrics
  • PDF Downloads(0)
  • Abstract views(368)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return