Citation: Robab Abbasi, Khalil Farhadi, Sepideh Banisaeid, Nader Nowroozi Pesyan, Arezu Jamali, Fatemeh Rahmani. Electrosynthesized polytyramine-copper oxalate nanocomposite on copper electrode for electrocatalytic oxidation of methanol in alkaline medium[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1098-1104. doi: 10.1016/S1872-2067(14)60049-8 shu

Electrosynthesized polytyramine-copper oxalate nanocomposite on copper electrode for electrocatalytic oxidation of methanol in alkaline medium

  • Corresponding author: Khalil Farhadi, 
  • Received Date: 5 December 2013
    Available Online: 26 January 2014

  • A polytyramine-copper oxalate nanocomposite modified copper (PTCOxNMC) electrode prepared by electropolymerization was examined for electrocatalytic activity towards the oxidation of methanol in alkaline solution using cyclic voltammetry and impedance spectroscopy. The prepared PTCOxNMC electrode showed a significantly high response for adsorbed methanol oxidation. The effects of various parameters such as potential scan rate and methanol concentration on the electrocatalytic oxidation at the surface of the PTCOxNMC electrode were investigated. Spectrometry techniques such as Fourier transform infrared spectroscopy and scanning electron microscopy were used to determine the surface physical characteristics of the modified electrode and revealed that the polytyramine-copper oxalate nanocomposite particles were highly dispersed on the surface of the copper electrode with a narrow size up to 40 nm. The very high current density obtained for the catalytic oxidation may have resulted from the high electrode surface area caused by modification with the poly-tyramine-copper oxalate nanocomposite.
  • 加载中
    1. [1]

      [1] Yao S K, Feng L, Zhao X, Liu C P, Xing W. J Power Sources, 2012, 217: 280

    2. [2]

      [2] Heli H, Jafarian M, Mahjani M G, Gobal F. Electrochim Acta, 2004, 49: 4999

    3. [3]

      [3] Nonaka H, Matsumura Y. J Electroanal Chem, 2002, 520: 101

    4. [4]

      [4] Zeng J H, Shu T, Liao S J, Liang Z X. Chin J Catal (曾建皇, 舒婷, 廖世军, 梁振兴. 催化学报), 2011, 32: 86

    5. [5]

      [5] Chen Y G, Zhuang L, Lu J T. Chin J Catal (陈酉贵, 庄林, 陆君涛. 催化学报), 2007, 28: 870

    6. [6]

      [6] Green C L, Kucernak A. J Phys Chem B, 2002, 106: 1036

    7. [7]

      [7] Arico A S, Poltarzewski Z, Kim H, Morana A, Giordano N, Antonucci V. J Power Sources, 1995, 55: 159

    8. [8]

      [8] Danaee I, Jafarian M, Mirzapoor A, Gobal F, Mahjani M G. Electrochim Acta, 2010, 55: 2093

    9. [9]

      [9] Soszko M, Łukaszewski M, Mianowska Z, Czerwinski A. J Power Sources, 2011, 196: 3513

    10. [10]

      [10] Cai S F, Wang D S, Niu Z Q, Li Y D. Chin J Catal (蔡双飞, 王定胜, 牛志强, 李亚栋. 催化学报), 2013, 34: 1964

    11. [11]

      [11] Jafarian M, Mahjani M G, Heli H, Gobal F, Khajesharifi H, Hamedi M H. Electrochim Acta, 2003, 48: 3423

    12. [12]

      [12] Golabi S M, Nozad A. Electroanalysis, 2003, 15: 278

    13. [13]

      [13] Yin S B, Zhu Q Q, Qiang Y H, Luo L. Chin J Catal (尹诗斌, 朱强强, 强颖怀, 罗林. 催化学报), 2012, 33: 290

    14. [14]

      [14] Karim-Nezhad G, Pashazadeh S, Pashazadeh A. Chin J Catal (催化学报), 2012, 33: 1809

    15. [15]

      [15] Jones F E III, Milen S B, Gurau B, Smotkin E S, Stock S R, Lukehart C M. J Nanosci Nanotechnol, 2002, 2: 81

    16. [16]

      [16] Luo J, Maye M M, Lou Y B, Han L, Hepel M, Zhong C J. Catal Today, 2002, 77: 127

    17. [17]

      [17] Lu X F, Zhang W J, Wang C, Wen T C, Wei Y. Prog Polym Sci, 2011, 36: 671

    18. [18]

      [18] Awasthi R, Singh R N. Int J Hydrogen Energy, 2012, 37: 2103

    19. [19]

      [19] El-Shafei A A. J Electroanal Chem, 1999, 471: 89

    20. [20]

      [20] Kim M S, Hwang T S, Kim K B. J Electrochem Soc, 1997, 144: 151

    21. [21]

      [21] Ojani R, Raoof J B, Hosseini Zavvarmahalleh S R. Electrochim Acta, 2008, 53: 2402

    22. [22]

      [22] Abdel Rahim M A, Abdel Hameed R M, Khalil M W. J Power Sources, 2004, 134: 160

    23. [23]

      [23] Hosseini M G, Abdolmaleki M, Ashrafpoor S. Chin J Catal (催化学报), 2013, 34: 1712

    24. [24]

      [24] Karim-Nezhad Gh, Zare Dizajdizi B, Seyed Dorraji P. Catal Commun, 2011, 12: 906

    25. [25]

      [25] Ojani R, Raoof J B, Ahmady-Khanghah Y. Electrochim Acta, 2011, 56: 3380

    26. [26]

      [26] Li Z, Meng F H, Ren J, Zheng H Y, Xie K C. Chin J Catal (李忠, 孟凡会, 任军, 郑华艳, 谢克昌. 催化学报), 2008, 29: 643

    27. [27]

      [27] Hasanzadeh M, Karim-Nezhad G, Mahjani M G, Jafarian M, Shadjou N, Khalilzadeh B, Saghatforoush L A. Catal Commun, 2008, 10: 295

    28. [28]

      [28] Nagy L, Nagy G, Hajos P. Sensor Actuat B, 2001, 76: 494

    29. [29]

      [29] Paixão T R L C, Bertotti M. J Electroanal Chem, 2004, 571: 101

    30. [30]

      [30] Cubeiro M L, Fierro J L G. Appl Catal A, 1998, 168: 307

    31. [31]

      [31] Fleischmann M, Korinek K, Pletcher D. J Electroanal Chem Interfacial Electrochem, 1971, 31: 39

    32. [32]

      [32] Iguchi K, Tachibana A. Appl Surf Sci, 2000, 159-160: 167

    33. [33]

      [33] Karim-Nezhad Gh, Seyed Dorraji P. Electrochim Acta, 2010, 55: 3414

    34. [34]

      [34] Jadhav R S, Hundiwale D G, Mahulikar P P. J Coat Technol Res, 2010, 7: 449

    35. [35]

      [35] Duran B, Turhan M C, Bereket G, Sezai Sarac A. Electrochim Acta, 2009, 55: 104

    36. [36]

      [36] Martins dos Santos L M, Lacroix J C, Chane-Ching K I, Adenier A, Abrantes L M, Lacaze P C. J Electroanal Chem, 2006, 587: 67

    37. [37]

      [37] Camalet J L, Lacroix J C, Aeiyach S, Chane-Ching K, Lacaze P C. Synth Met, 1998, 93: 133

    38. [38]

      [38] Herrasti P, del Rio A I, Recio J. Electrochim Acta, 2007, 52: 6496

    39. [39]

      [39] Situmorang M, Gooding J J, Hibbert D B, Barnet D. Biosensors Bioelectron, 1998, 13: 953

    40. [40]

      [40] Luo M Z, Baldwin R P. J Electroanal Chem, 1995, 387: 87

    41. [41]

      [41] Marioli J M, Kuwana T. Electrochim Acta, 1992, 37: 1187

    42. [42]

      [42] Wels B, Johnson D C. J Electrochem Soc, 1990, 137: 2785

    43. [43]

      [43] Burke L D, O'Dwyer K J. Electrochim Acta, 1991, 36: 1937

    44. [44]

      [44] Yoshizawa K, Kagawa Y. J Phys Chem A, 2000, 104: 9347

    45. [45]

      [45] Roslonek G, Taraszewska J. J Electroanal Soc, 1992, 325: 285

    46. [46]

      [46] Nozad Golikand A, Asgari M, Ghannadi Maragheh M, Shahrokhian S. J Electroanal Chem, 2006, 588: 155

    47. [47]

      [47] Ureta-Zanartu M S, Alarcon A, Munoz G, Gutierrez C. Electrochim Acta, 2007, 52: 7857

    48. [48]

      [48] Nicholson R S, Shain I. Anal Chem, 1964, 36: 706 Randles J E B. Discuss Faraday Soc, 1947: 11

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    3. [3]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    4. [4]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    9. [9]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    10. [10]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    11. [11]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    12. [12]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    13. [13]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    14. [14]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    15. [15]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    16. [16]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    17. [17]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    18. [18]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    19. [19]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    20. [20]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

Metrics
  • PDF Downloads(0)
  • Abstract views(343)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return