Citation: Fudong Liu, Wenpo Shan, Dawei Pan, Tengying Li, Hong He. Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1438-1445. doi: 10.1016/S1872-2067(14)60048-6 shu

Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles

  • Corresponding author: Hong He, 
  • Received Date: 30 December 2013
    Available Online: 26 January 2014

    Fund Project:

  • A catalyst production line with a production capacity of 6000 catalyst monoliths per month for the selective catalytic reduction of NOx by NH3 (NH3-SCR) for NOx abatement in diesel vehicle exhaust was set up based on a detailed laboratory study of the catalyst formulation and washcoating technology for V2O5-WO3/TiO2 catalyst. The catalyst produced by this line was tested on a bench scale diesel engine. The V2O5-WO3/TiO2 powder catalyst prepared in the laboratory and production line both achieved >80% NOx conversion at 200-450 ℃ and a GHSV of 50000 h-1. The washcoated catalyst used a large cordierite support and gave >80% NOx conversion at 250-450 ℃ and GHSVs of 10000-30000 h-1. The engine bench tests showed that after treatment by the catalyst, the NOx emission met the European steady-state cycle (ESC) and European transient cycle (ETC) limits of the China IV standard. The production line can also be used for the production of vanadium-free NH3-SCR catalysts to meet the required replacement of the present vanadium-based NH3-SCR catalyst in the future.
  • 加载中
    1. [1]

      [1] Granger P, Parvulescu V I. Chem Rev, 2011, 111: 3155

    2. [2]

      [2] Liu Z M, Woo S I. Catal Rev, 2006, 48: 43

    3. [3]

      [3] Ministry of Environmental Protection of the People's Republic of China. China Vehicle Emission Control Annual Report (2012) [EB/OL]. [2012-12-27]. http://www.mep.gov.cn/gkml/hbb/qt/201212/t20121227_244340.htm

    4. [4]

      [4] Johnson T V. Int J Engine Res, 2009, 10: 275

    5. [5]

      [5] Liu Q Y, Liu Z Y. J Chem Ind Eng (China), 2008, 59: 1894

    6. [6]

      [6] Roy S, Hegde M S, Madras G. Appl Energy, 2009, 86: 2283

    7. [7]

      [7] Long R Q, Yang R T. J Am Chem Soc, 1999, 121: 5595

    8. [8]

      [8] Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal Rev, 2008, 50: 492

    9. [9]

      [9] Shi X Y, Liu F D, Xie L J, Shan W P, He H. Environ Sci Technol, 2013, 47: 3293

    10. [10]

      [10] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J Catal, 2010, 275: 187

    11. [11]

      [11] Schmieg S J, Oh S H, Kim C H, Brown D B, Lee J H, Peden C H F, Kim D H. Catal Today, 2012, 184: 252

    12. [12]

      [12] Fickel D W, D'addio E, Lauterbach J A, Lobo R F. Appl Catal B, 2011, 102: 441

    13. [13]

      [13] Xie L J, Liu F D, Ren L M, Shi X Y, Xiao F S, He H. Environ Sci Technol, 2014, 48: 566

    14. [14]

      [14] Martínez-Franco R, Moliner M, Franch C, Kustov A, Corm A. Appl Catal B, 2012, 127: 273

    15. [15]

      [15] Yu T, Wang J, Shen M Q, Li W. Catal Sci Technol, 2013, 3: 3234

    16. [16]

      [16] Ma L, Cheng Y S, Cavataio G, McCabe R W, Fu L X, Li J H. Chem Eng J, 2013, 225: 323

    17. [17]

      [17] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Appl Catal B, 2012, 115-116: 100

    18. [18]

      [18] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Chem Commun, 2011, 47: 8046

    19. [19]

      [19] Chen L, Li J H, Ge M F, Zhu R H. Catal Today, 2010, 153: 77

    20. [20]

      [20] Peng Y, Qu R Y, Zhang X Y, Li J H. Chem Commun, 2013, 49: 6215

    21. [21]

      [21] Liu Z M, Yi Y, Li J H, Woo S I, Wang B Y, Cao X Z, Li Z X. Chem Commun, 2013, 49: 7726

    22. [22]

      [22] Ma Z R, Weng D, Wu X D, Si Z C. J Environ Sci, 2012, 24: 1305

    23. [23]

      [23] Si Z C, Weng D, Wu X D, Yang J, Wang B. Catal Commun, 2010, 11: 1045

    24. [24]

      [24] Si Z C, Weng D, Wu X D, Ran R, Ma Z R. Catal Commun, 2012, 17: 146

    25. [25]

      [25] Liu F D, He H, Zhang C B. Chem Commun, 2008: 2043

    26. [26]

      [26] Yang S J, Li J H, Wang C Z, Chen J H, Ma L, Chang H Z, Chen L, Peng Y, Yan N Q. Appl Catal B, 2012, 117-118: 73

    27. [27]

      [27] Ma L, Li J H, Ke R, Fu L X. J Phys Chem C, 2011, 115: 7603

    28. [28]

      [28] Si Z C, Weng D, Wu X D, Li J, Li G. J Catal, 2010, 271: 43

    29. [29]

      [29] Busca G, Lietti L, Ramis G, Berti F. Appl Catal B, 1998, 18: 1

    30. [30]

      [30] Liu F D, Shan W P, Shi X Y, Zhang C B, He H. Chin J Catal (刘福东, 单文坡, 石晓燕, 张长斌, 贺泓. 催化学报), 2011, 32: 1113

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(310)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return