Citation: Hongquan Jiang, Qiaofeng Wang, Shiyang Li, Jingshen Li, Qingyuan Wang. Pr, N, and P tri-doped anatase TiO2 nanosheets with enhanced photocatalytic activity under sunlight[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1068-1077. doi: 10.1016/S1872-2067(14)60047-4 shu

Pr, N, and P tri-doped anatase TiO2 nanosheets with enhanced photocatalytic activity under sunlight

  • Corresponding author: Hongquan Jiang, 
  • Received Date: 16 December 2013
    Available Online: 22 January 2014

    Fund Project:

  • Pr, N, and P tri-doped anatase TiO2 nanosheets (PrNPTO) were synthesized by a combined sol-gel solvothermal method and characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy, UV-vis absorbance spectroscopy, and photoluminescence spectroscopy. When the Pr-doping concentration was 1.75 wt% and calcination temperature employed was 550℃, the resulting PrNPTO showed the highest photoactivity towards the degradation of methylene blue under visible and UV light irradiation. PrNPTO also displayed superior photoactivity towards the degradation of 4-chlorophenol under sunlight (kapp=3.90×10-2 min-1) over the non-doped, single-doped, and co-doped samples, and P25 TiO2 (kapp =1.17×10-2 min-1). The high photoactivity of PrNPTO was attributed to the increased UV and visible light absorption properties, reduced recombination of photogenerated carriers, increased surface hydroxyl content, and improved surface textural properties. PrNPTO was highly efficient and stable under simulated sunlight irradiation, which are essential attributes for practical application in environment-related remediation schemes.
  • 加载中
    1. [1]

      [1] Di Paola A, García-López E, Marcì G, Palmisano L. J Hazard Mater, 2012, 211-212: 3

    2. [2]

      [2] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    3. [3]

      [3] Chen L H, Li X Y, Deng Z, Hu Z Y, Rooke J C, Krief A, Yang X Y, Su B L. Catal Today, 2013, 212: 89

    4. [4]

      [4] Olabarrieta J, Zorita S, Peńa I, Rioja N, Monzón O, Benguria P, Scifo L. Appl Catal B, 2012, 123-124: 182

    5. [5]

      [5] Dolat D, Quici N, Kusiak-Nejman E, Morawski A W, Li Puma G. Appl Catal B, 2012, 115-116: 81

    6. [6]

      [6] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418

    7. [7]

      [7] Yu F H, Wang J H, Zhao K F, Yin J, Jin C Z, Liu X. Chin J Catal (于福海, 王军虎, 赵昆峰, 尹杰, 金长子, 刘忻. 催化学报), 2013, 34: 1216

    8. [8]

      [8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    9. [9]

      [9] Dozzi M V, Selli E. J Photochem Photobiol C, 2013, 14: 13

    10. [10]

      [10] Xu L, Tang C Q, Qian J, Huang Z B. Appl Surf Sci, 2010, 256: 2668

    11. [11]

      [11] Lin L, Lin W, Xie J L, Zhu Y X, Zhao B Y, Xie Y C. Appl Catal B, 2007, 75: 52

    12. [12]

      [12] Lü Y Y, Yu L S, Huang H Y, Liu H L, Feng Y Y. J Alloys Compd, 2009, 488: 314

    13. [13]

      [13] Zheng R Y, Guo Y, Jin C, Xie J L, Zhu Y X, Xie Y C. J Mol Catal A, 2010, 319: 46

    14. [14]

      [14] Elghnigi K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M. J Environ Sci, 2012, 24: 479

    15. [15]

      [15] Yu C L, Yu J C, Zhou W Q, Yang K. Catal Lett, 2010, 140: 172

    16. [16]

      [16] Chen W G, Yuan P F, Zhang S, Sun Q, Liang E J, Jia Y. Phys B, 2012, 407: 1038

    17. [17]

      [17] Chiou C H, Juang R S. J Hazard Mater, 2007, 149: 1

    18. [18]

      [18] Yang J, Dai J, Li J T. Appl Surf Sci, 2011, 257: 8965

    19. [19]

      [19] Wu J, Liu Q J, Gao P, Zhu Z Q. Mater Res Bull, 2011, 46: 1997

    20. [20]

      [20] Lin L, Zheng R Y, Xie J L, Zhu Y X, Xie Y C. Appl Catal B, 2007, 76: 196

    21. [21]

      [21] Jiang H Q, Wang Q F, Li J S, Wang Q Y, Li Z Y. Acta Chim Sin (姜洪泉, 王巧凤, 李井申, 王庆元, 李振宇. 化学学报), 2012, 70: 2173

    22. [22]

      [22] Umare S S, Charanpahari A, Sasikala R. Mater Chem Phys, 2013, 140: 529

    23. [23]

      [23] Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y. Chem Eng J, 2013, 215-216: 348

    24. [24]

      [24] Jiang H Q, Wang Q Y, Zang S Y, Li J S, Wang Q F. J Hazard Mater, 2013, 261: 44

    25. [25]

      [25] Yan P P, Jiang H Q, Zang S Y, Li J S, Wang Q Y, Wang Q F. Mater Chem Phys, 2013, 139: 1014

    26. [26]

      [26] Xia K S, Ferguson D, Djaoued Y, Robichaud J, Tchoukanova N, Brüning R, McCalla E. Appl Catal A, 2010, 387: 231

    27. [27]

      [27] Yao N, Cao S L, Yeung K L. Microporous Mesoporous Mater, 2009, 117: 570

    28. [28]

      [28] He F, Ma F, Li T, Li G X. Chin J Catal (何霏, 马芳, 李涛, 李光兴. 催化学报), 2013, 34: 2263

    29. [29]

      [29] Jaiswal R, Patel N, Kothari D C, Miotello A. Appl Catal B, 2012, 126: 47

    30. [30]

      [30] Cheng X W, Yu X J, Li B Y, Yan L, Xing Z P, Li J J. Mater Sci Eng B, 2013, 178: 425

    31. [31]

      [31] Lee S, Cho I S, Lee D K, Kim D W, Noh T H, Kwak C H, Park S, Hong K S, Lee J K, Jung H S. J Photochem Photobiol A, 2010, 213: 129

    32. [32]

      [32] Ma Y F, Zhang J L, Tian B Z, Chen F, Wang L Z. J Hazard Mater, 2010, 182: 386

    33. [33]

      [33] Shen Y F, Xiong T Y, Du H, Jin H Z, Shang J K, Yang K. J Sol-Gel Sci Technol, 2009, 50: 98

    34. [34]

      [34] Hu S Z, Li F Y, Fan Z P. J Hazard Mater, 2011, 196: 248

    35. [35]

      [35] Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E. Chem Phys, 2007, 339: 44

    36. [36]

      [36] Brahimi R, Bessekhouad Y, Trari M. Phys B, 2012, 407: 3897

    37. [37]

      [37] Amlouk A, El Mir L, Kraiem S, Saadoun M, Alaya S, Pierre A C. Mater Sci Eng B, 2008, 146: 74

    38. [38]

      [38] Jing L Q, Xin B F, Yuan F L, Xue L P, Wang B Q, Fu H G. J Phys Chem B, 2006, 110: 17860

    39. [39]

      [39] Sun S, Ding J J, Bao J, Gao C, Qi Z M, Yang X Y, He B, Li C X. Appl Surf Sci, 2012, 258: 5031

    40. [40]

      [40] Choi W K, Termin A, Haffman M R. J Phys Chom, 1994, 98: 3669

    41. [41]

      [41] Zhang Q H, Gao L, Guo J K. Appl Catal B, 2000, 26: 207

    42. [42]

      [42] Li H Q, Xu B L, Fan Y N. Chem Phys Lett, 2013, 558: 66

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(799)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return