Citation: Jing Wang, Yongcun Zou, Yu Sun, Maximilian Hemgesberg, Dirk Schaffner, Hongcheng Gao, Xiaojing Song, Wenxiang Zhang, Mingjun Jia, Werner R. Thiel. Electrostatic immobilization of phosphomolybdic acid on imidazolium-based mesoporous organosilicas for catalytic olefin epoxidation[J]. Chinese Journal of Catalysis, ;2014, 35(4): 532-539. doi: 10.1016/S1872-2067(14)60025-5 shu

Electrostatic immobilization of phosphomolybdic acid on imidazolium-based mesoporous organosilicas for catalytic olefin epoxidation

  • Corresponding author: Mingjun Jia,  Werner R. Thiel, 
  • Received Date: 14 November 2013
    Available Online: 2 January 2014

    Fund Project: 国家自然科学基金(21173100). (21173100)

  • Polyoxometalate-based heterogeneous materials were prepared by the immobilization of 12-phosphomolybdic acid (PMA) on periodic mesoporous organosilicas containing embedded imidazolium cations (PMO-ILs). The resulting hybrid materials (PMA@PMO-ILs) were characterized by N2 adsorption-desorption, powder X-ray diffraction, atomic adsorption spectroscopy, thermogravimetric and differential thermal analyses, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and solid-state cross-polarization magic angle spinning nuclear magnetic resonance. PMA was electrostatically immobilized on the surface and in the channels of PMO-ILs. The PMO-IL support and PMA structures were retained during the preparation processes. The catalytic properties of the PMA@PMO-ILs were evaluated for the liquid-phase epoxidation of cyclooctene. PMA@PMO-ILs were catalytically active, with nearly 100% selectivity to cyclooctene epoxide using tert-butyl hydroperoxide as the oxidant. The catalysts could be reused four times without obvious loss of activity or selectivity under identical reaction conditions. Imidazolium cations in the PMO-IL framework improved the stability and recyclability of the PMA immobilized catalysts.
  • 加载中
    1. [1]

      [1] Grigoropoulou G, Clark J H, Elings J A. Green Chem, 2003, 5: 1

    2. [2]

      [2] Monnier J R. Appl Catal A, 2001, 221: 73

    3. [3]

      [3] Wu M, Chou L J, Song H L. Chin J Catal (吴妹, 丑凌军, 宋焕玲. 催化学报), 2013, 34: 789

    4. [4]

      [4] Wu J H, Jiang P P, Leng Y, Ye Y Y, Qin X J. Chin J Catal (吴江浩, 蒋平平, 冷炎, 叶媛园, 秦晓洁. 催化学报), 2013, 34: 2236

    5. [5]

      [5] Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M. J Org Chem, 1988, 53: 3587

    6. [6]

      [6] Kozhevnikov I V. Chem Rev, 1998, 98: 171

    7. [7]

      [7] Mizuno N, Yamaguchi K, Kamata K. Coord Chem Rev, 2005, 249: 1944

    8. [8]

      [8] Dolbecq A, Dumas E, Mayer C R, Mialane P. Chem Rev, 2010, 110: 6009

    9. [9]

      [9] Long D L, Tsunashima R, Cronin L. Angew Chem Int Ed, 2010, 49: 1736

    10. [10]

      [10] Kholdeeva O A, Maksimchuk N V, Maksimov G M. Cataly Today, 2010, 157: 107

    11. [11]

      [11] Kasai J, Nakagawa Y, Uchida S, Yamaguchi K, Mizuno N. Chem Eur J, 2006, 12: 4176

    12. [12]

      [12] Bordoloi A, Lefebvre F, Halligudi S B. J Catal, 2007, 247: 166

    13. [13]

      [13] Liu P, Wang H, Feng Z C, Ying P L, Li C. J Catal, 2008, 256: 345

    14. [14]

      [14] Bordoloi A, Sahoo S, Lefebvre F, Halligudi S B. J Catal, 2008, 259: 232

    15. [15]

      [15] Karimi Z, Mahjoub A R, Davari Aghdam F. Inorg Chim Acta, 2009, 362: 3725

    16. [16]

      [16] Liu P, Wang C H, Li C. J Catal, 2009, 262: 159

    17. [17]

      [17] Estrada A C, Santos I C M S, Simões M M Q, Neves M G P M S, Cavaleiro J A S, Cavaleiro A M V. Appl Catal A, 2011, 392: 28

    18. [18]

      [18] Karimi Z, Mahjoub A R, Harati S M. Inorg Chim Acta, 2011, 376: 1

    19. [19]

      [19] Armatas G S, Bilis G, Louloudi M. J Mater Chem, 2011, 21: 2997

    20. [20]

      [20] Qi W, Wang Y Z, Li W, Wu L X. Chem Eur J, 2010, 16: 1068

    21. [21]

      [21] Yu X D, Xu L L, Yang X, Guo Y N, Li K X, Hu J L, Li W, Ma F Y, Guo Y H. Appl Surf Sci, 2008, 254: 4444

    22. [22]

      [22] Zhang R F, Yang C. J Mater Chem, 2008, 18: 2691

    23. [23]

      [23] Schroden R C, Blanford C F, Melde B J, Johnson B J S, Stein A. Chem Mater, 2001, 13: 1074

    24. [24]

      [24] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J Catal, 2008, 257: 315

    25. [25]

      [25] Maksimchuk N V, Kovalenko K A, Arzumanov S S, Chesalov Y A, Melgunov M S, Stepanov A G, Fedin V P, Kholdeeva O A. Inorg Chem, 2010, 49: 2920

    26. [26]

      [26] Maksimchuk N V, Kholdeeva O A, Kovalenko K A, Fedin V P. Isr J Chem, 2010, 50: 1

    27. [27]

      [27] Du J, Yu J H, Tang J Y, Wang J, Zhang W X, Thiel W R, Jia M J. Eur J Inorg Chem, 2011, 2011: 2361

    28. [28]

      [28] Zhao H H, Zeng L X, Li Y L, Liu C, Hou B, Wu D, Feng N D, Zheng A M, Xie X L, Su S P, Yu N Y. Microporous Mesoporous Mater, 2013, 172: 67

    29. [29]

      [29] Karimi B, Elhamifar D, Clark J H, Hunt A J. Chem Eur J, 2010, 16: 8047

    30. [30]

      [30] Karimi B, Gholinejad M, Khorasani M. Chem Commun, 2012, 48: 8961

    31. [31]

      [31] Karimi B, Elhamifar D, Clark J H, Hunt A J. Org Biomol Chem, 2011, 9: 7420

    32. [32]

      [32] Karimi B, Elhamifar D, Yari O, Khorasani M, Vali H, Clark J H, Hunt A J. Chem Eur J, 2012, 18: 13520

    33. [33]

      [33] Wang L, Shylesh S, Dehe D, Philippi T, Dörr G, Seifert A, Zhou Z, Hartmann M, Klupp Taylor R N, Jia M J, Ernst S, Thiel W R. ChemCatChem, 2012, 4: 395

    34. [34]

      [34] Cazin C S J, Veith M, Braunstein P, Bedford R B. Synthesis, 2005, 4: 622

    35. [35]

      [35] Liu G, Wang Z L, Jia M J, Zou X J, Zhu X M, Zhang W X, Jiang D Z. J Phys Chem B, 2006, 110: 16953

    36. [36]

      [36] Jin Y, Wang P J, Yin D H, Liu J F, Qiu H Y, Yu N Y. Microporous Mesoporous Mater, 2008, 111: 569

    37. [37]

      [37] Kim H, Jung J C, Park D R, Lee J, Cho K M, Park S, Lee S H, Song I K. Korean J Chem Eng, 2008, 25: 231

    38. [38]

      [38] Kim H, Kim P, Lee K Y, Yeom S H, Yi J, Song I K. Catal Today, 2006, 111: 361

    39. [39]

      [39] Pathan S, Patel A. Dalton Trans, 2011, 40: 348

    40. [40]

      [40] Essayem N, Holmqvist A, Gayraud P Y, Vedrine J C, Ben Taarit Y. J Catal, 2001, 197: 273

    41. [41]

      [41] Duncan D C, Chambers R C, Hecht E, Hill C L. J Am Chem Soc, 1995, 117: 681

    42. [42]

      [42] Thiel W R, Eppinger J. Chem Eur J, 1997, 3: 696

    43. [43]

      [43] Chandra P, Pandhare S L, Umbarkar S B, Dongare M K, Vanka K. Chem Eur J, 2013, 19: 2030

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(431)
  • Abstract views(581)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return