Citation:
Tiago P. Braga, Regina C. R. Santos, Barbara M. C. Sales, Bruno R. da Silva, Antônio N. Pinheiro, Edson R. Leite, Antoninho Valentini. CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology[J]. Chinese Journal of Catalysis,
;2014, 35(4): 514-523.
doi:
10.1016/S1872-2067(14)60018-8
-
A factorial experimental design was combined with response surface methodology (RSM) to optimize the catalyzed CO2 consumption by coke deposition and syngas production during the dry reforming of CH4. The CH4/CO2 feed ratio and the reaction temperature were chosen as the variables, and the selected responses were CH4 and CO2 conversion, the H2/CO ratio, and coke deposition. The optimal reaction conditions were found to be a CH4/CO2 feed ratio of approximately 3 at 700 ℃, producing a large quantity of coke and realizing high CO2 conversion. Furthermore, Raman results showed that the CH4/CO2 ratio and reaction temperature affect the system's response, particularly the characteristics of the coke produced, which indicates the formation of carbon nanotubes and amorphous carbon.
-
Keywords:
- Factorial design,
- Carbon dioxide,
- Reforming,
- Methane,
- Carbon nanotube
-
-
-
[1]
[1] Nigam P S, Singh A. Prog Energy Combust Sci, 2011, 37: 52
-
[2]
[2] Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Int J Greenh Gas Control, 2008, 2: 9
-
[3]
[3] Demirbas A. Appl Energy, 2009, 86: S108
-
[4]
[4] Naik S N, Goud V V, Rout P K, Dalai A K. Renew Sustain Energy Rev, 2010, 14: 578
-
[5]
[5] Kang K M, Kim H W, Shim I W, Kwak H Y. Fuel Process Technol, 2011, 92: 1236
-
[6]
[6] Barroso-Quironga M M, Castro-Luna A E. Int J Hydrogen Energy, 2010, 35: 6052
-
[7]
[7] Rivas M E, Fierro J L G, Goldwasser M R, Pietri E, Perez-Zurita M J, Griboval-Constant A, Leclercq G. Appl Catal A, 2008, 344: 10
-
[8]
[8] Shi C, Zhang A J, Li X S, Zhang S H, Zhu A M, Ma Y F, Au C. Appl Catal A, 2012, 431-432: 164
-
[9]
[9] Ibrahim A A, Fakeeha A H, Al-Fatesh A S. Int J Hydrogen Energy, 2014, 39: 1680
-
[10]
[10] Sokolov S, Kondratenko E V, Pohl M M, Rodemerck U. Int J Hydrogen Energy, 2013, 38: 16121
-
[11]
[11] Fukuhara C, Hyodo R, Yamamoto K, Masuda K, Watanabe R. Appl Catal A, 2013, 468: 18
-
[12]
[12] da Silva B R, dos Santos R C R, Valentini A. Curr Top Catal, 2012, 10: 93
-
[13]
[13] Albarazi A, Beaunier P, Da Costa P. Int J Hydrogen Energy, 2013, 38: 127
-
[14]
[14] Pour A N, Shahri S M K, Bozorgzadeh H R, Zamani Y, Tavasoli A, Marvast M A. Appl Catal A, 2008, 348: 201
-
[15]
[15] Guo J Z, Hou Z Y, Gao J, Zheng X M. Fuel, 2008, 87: 1348
-
[16]
[16] Maluf S S, Assaf E M. Fuel, 2009, 88: 1547
-
[17]
[17] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. J Catal, 2007, 250: 331
-
[18]
[18] Gao J, Hou Z Y, Guo J Z, Zhu Y H, Zheng X M. Catal Today, 2008, 131: 278
-
[19]
[19] Zhang J G, Wang H, Dalai A K. Appl Catal A, 2008, 339: 121
-
[20]
[20] Zhao C G, Ji L J, Liu H J, Hu G J, Zhang S M, Yang M S, Yang Z Z. J Solid State Chem, 2004, 177: 4394
-
[21]
[21] Mittal H, Mishra S B, Mishra A K, Kaith B S, Jindal R. J Inorg Organomet Polym Mater, 2013, 23: 1128
-
[22]
[22] Wu Y Y, Zhou S Q, Qin F H, Ye X Y, Zheng K. J Hazard Mater, 2010, 180: 456
-
[23]
[23] Olmez-Hanci T, Arslan-Alaton I, Basar G. J Hazard Mater, 2011, 185: 193
-
[24]
[24] Braga T P, Sales B M C, Pinheiro A N, Herrera W T, Baggio-Saitovitch E, Valentini A. Catal Sci Technol, 2011, 1: 1383
-
[25]
[25] Hormozi-Nezhad M R, Jalali-Heravi M, Robatjazi H, Ebrahimi-Najafabadi H. Colloids Surf A, 2012, 393: 46
-
[26]
[26] de la Osa A R, de Lucas A, Sanchez-Silva L, Diaz-Maroto J, Valverde J L, Sanchez P. Fuel, 2012, 95: 587
-
[27]
[27] Karimipour S, Gerspacher R, Gupta R, Spiteri R J. Fuel, 2013, 103: 308
-
[28]
[28] Pompeo F, Nichio N N, Souza M M V M, Cesar D V, Ferretti O A, Schmal M. Appl Catal A, 2007, 316: 175
-
[29]
[29] Gonçalves N S, Carvalho J A, Lima Z M, Sasaki J M. Mater Lett, 2012, 72: 36
-
[30]
[30] Zhao J F, Zhao J J, Chen J H, Wang X H, Han Z D, Li Y H. Ceram Int, 2014, 40: 3379
-
[31]
[31] Chen G, Chen J, Srinivasakannan C, Peng J H. Appl Surf Sci, 2012, 258: 3068
-
[32]
[32] Pavlova S, Kapokova L, Bunina R, Alikina G, Sazonova N, Krieger T, Ishchenko A, Rogov V, Gulyaev R, Sadykov V, Mirodatos C. Catal Sci Technol, 2012, 2: 2099
-
[33]
[33] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108-109: 177
-
[34]
[34] Pocsik I, Hundhausen M, Koos M, Ley L. J Non-Cryst Solids, 1998, 227-230 (Pt. B): 1083
-
[35]
[35] Klar P, Lidorikis E, Eckmann A, Verzhbitskiy I A, Ferrari A C, Casiraghi C. Phys Rev B, 2013, 87: 205435
-
[36]
[36] Ferrari A C. Solid State Commun, 2007, 143: 47
-
[1]
-
-
-
[1]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[2]
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
-
[3]
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
-
[4]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[5]
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
-
[6]
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
-
[7]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[8]
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
-
[9]
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
-
[10]
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
-
[11]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[12]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[13]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[14]
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
-
[15]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[16]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[17]
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
-
[18]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[19]
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
-
[20]
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
-
[1]
Metrics
- PDF Downloads(451)
- Abstract views(467)
- HTML views(30)