Citation: Jing-Wei Zheng, Lin Ma. Assessment of silver(I) complexes of salicylaldehyde derivatives—histidine Schiff base as novel α-glucosidase inhibitors[J]. Chinese Chemical Letters, ;2016, 27(02): 283-286. doi: 10.1016/j.cclet.2015.11.015 shu

Assessment of silver(I) complexes of salicylaldehyde derivatives—histidine Schiff base as novel α-glucosidase inhibitors

  • Corresponding author: Jing-Wei Zheng, 
  • Received Date: 31 March 2015
    Available Online: 21 August 2015

  • In this study, a novel class of histidine Schiff base silver (I) complexes derived from salicylaldehyde, 1a-9a, was found to be an effective inhibitor of α-glucosidase. The results of this study showed that the newly synthesized complexes inhibited α-glucosidase through noncompetitive mechanisms; the IC50 values were ranging from 0.00431 µmol L-1 to 0.492 µmol L-1. The structure-activity relationship was established as well. These results demonstrated that compound 7a, 5-nitro salicylaldehyde Schiff base silver complex, is the most promising α-glucosidase inhibitor with the lowest IC50 value, which could be exploited as a drug candidate to alleviate postprandial hyperglycemia in the treatment of type Ⅱ diabetes mellitus. This research provided a catalyst-free, simple, and environmentally benign reaction to synthesize compounds using mechanochemistry.
  • 加载中
    1. [1]

      [1] N. Asano, Glycosidase inhibitors: update and perspectives on practical use, Glycobiology 13 (2003) 93R-104R.

    2. [2]

      [2] World Health Organization, Diabetes, Available at (http://www.who.int/mediacentre/factsheets/fs312/en/index.html).

    3. [3]

      [3] O. Vahidi, K.E. Kwok, R.B. Gopaluni, L. Sun, Developing a physiological model for type Ⅱ diabetes mellitus, Biochem. Eng. J. 55 (2011) 7-16.

    4. [4]

      [4] A. Trapero, A. Llebaria, A prospect for pyrrolidine iminosugars as antidiabetic aglucosidase inhibitors, J. Med. Chem. 55 (2012) 10345-10346.

    5. [5]

      [5] H.W. Ryu, B.W. Lee, M.J. Curtis-Long, et al., Polyphenols from Broussonetia papyrifera displaying potent α-glucosidase inhibition, J. Agric. Food Chem. 58 (2010) 202-208.

    6. [6]

      [6] Y. Liu, L. Ma, W.H. Chem, et al., Binding mechanism and synergetic effects of xanthone derivatives as noncompetitive α-glucosidase inhibitors: a theoretical and experimental study, J. Phys. Chem. B 117 (2013) 13464-13471.

    7. [7]

      [7] S.S.Abdel-Meguid,B.W.Metcalf, T.J. Carr, et al.,Anorally bioavailableHIV-1 protease inhibitor containing an imidazole-derived peptide bond replacement: crystallographic and pharmacokinetic analysis, Biochemistry 33 (1994) 11672-11677.

    8. [8]

      [8] D. Dimova, P. Iyer, M. Vogt, et al., Assessing the target differentiation potential of imidazole-based protein kinase inhibitors, J. Med. Chem. 55 (2012) 11067-11071.

    9. [9]

      [9] A. Verras, I.D. Kuntz, P.R. Ortiz de Montellano, Computer-assisted design of selective imidazole inhibitors for cytochrome P450 enzymes, J. Med. Chem. 47 (2004) 3572-3579.

    10. [10]

      [10] Q.B. Su, S. Ioannidis, C. Chuaqui, et al., Discovery of 1-methyl-1H-imidazole derivatives as potent Jak2 inhibitiors, J. Med. Chem. 57 (2014) 144-158.

    11. [11]

      [11] R. Buchman, P.F. Heinstein, J.N. Wells, Imidazole derivatives as inhibitors of cyclic nucleotide phosphodiesterases, J. Med. Chem. 17 (1974) 1168-1173.

    12. [12]

      [12] S.W. He, Q.M. Hong, Z. Lai, et al., Discovery of a potent and selective DGAT1 inhibitor with a piperidinyl-oxy-cyclohexanecarboxylic acid moiety, Med. Chem. Lett. 5 (2014) 1082-1087.

    13. [13]

      [13] L.H. Abdel-Rahman, R.M. EI-Khatib, L.A.E. Nassr, A.M. Abu-Dief, F.E.D. Lashin, Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(Ⅱ) Schiff base amino acid complexes, Spectrochim. Acta A 111 (2013) 266-276.

    14. [14]

      [14] A. Varrot, M. Schülein, M. Pipelier, A. Vasella, G.J. Davies, Lateral protonation of a glycosidase inhibitor. Structure of the Bacillus agaradhaerens Cel5A in complex with a cellobiose-derived imidazole at 0. 97A˚ resolution, J. Am. Chem. Soc. 121 (1991) 2621-2622.

    15. [15]

      [15] A. Trzesowska-Kruszynska, Copper complex of glycine schiff base: in situ ligand synthesis, structure, spectral, and thermal properties, J. Mol. Struct. 1017 (2012) 72-78.

    16. [16]

      [16] N. Raman, A. Sakthivel, N. Pravin, Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid schiff base complexes: a comparative approach, Spectrochim. Acta A 125 (2014) 404-413.

    17. [17]

      [17] R. Ando, H. Inden, H. Sugino, et al., Spectroscopic characterization of amino acid and amino acid ester-Schiff-base complexes of oxovanadium and their catalysis in sulfide oxidation, Inorg. Chim. Acta 357 (2004) 1337-1344.

    18. [18]

      [18] R. Ganguly, B. Sreenivasulu, J.J. Vittal, Amino acid-containing reduced schiff bases as the building blocks for metallasupramolecular structures, Coordin. Chem. Rev. 252 (2008) 1027-1050.

    19. [19]

      [19] A. Pasini, L. Casella, Some aspects of the reactivity of amino acids coordinated to metal ions, J. Inorg. Nucl. Chem. 36 (1974) 2133-2144.

    20. [20]

      [20] J. Zuo, C.F. Bi, Y.H. Fan, et al., Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid schiff base-copper complexes, J. Inorg. Biochem. 118 (2013) 83-93.

    21. [21]

      [21] L. Ronconi, P.J. Sadler, Using coordination chemistry to design new medicines, Coor. Chem. Rev. 251 (2007) 1633-1648.

    22. [22]

      [22] N.C. Kasuga, M. Sato, A. Amano, et al., Light-stable and antimicrobial active silver(I) complexes composed of triphenylphosphine and amino acid ligands: Synthesis, crystal structure, and antimicrobial activity of silver(I) complexes constructed with hard and soft donor atoms (n{[Ag(L)(PPh3)] 2} with L = α-ala- or asn- and n = 1 or 2), Inorg. Chim. Acta 361 (2008) 1267-1273.

    23. [23]

      [23] S.R. Moamen, I.M. El-Deen, K.I. Hassan, S. El-Ghool, Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid, Spectrochimi. Acta. A 65 (2006) 1208-1220.

    24. [24]

      [24] G. Pistia-Brueggeman, R.I. Hollingsworth, A preparation and screening strategy for glycosidase inhibitors, Tetrahedron 57 (2001) 8773-8778.

    25. [25]

      [25] J.S. Kim, Y.S. Kwon, Y.J. Sa, M.J. Kim, Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect, J. Agric. Food Chem. 59 (2011) 138-144.

    26. [26]

      [26] G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions, J. Am. Chem. Soc. 123 (2001) 8701-8708.

    27. [27]

      [27] B.K. Singh, H.K. Rajour, A. Prakash, Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine, Spectrochim. Acta A 94 (2012) 143-151.

    28. [28]

      [28] T.D. Heightman, A. Vasella, K.E. Tsitsanou, et al., Cooperative interactions of the catalytic nucleophile and the catalytic acid in the inhibition of β-glycosidases. Calculations and their validation by comparative kinetic and structural studies of the inhibition of glycogen phosphorylase b, Helv. Chim. Acta 81 (1998) 853-864.

    29. [29]

      [29] K. Bharatham, N. Bharatham, K.H. Park, K.W. Lee, Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors, J. Mol. Graphics Modell. 26 (2008) 1202-1212.

    30. [30]

      [30] N. Yar, M. Bajda, S. Shahzad, et al., Organocatalyzed solvent free an efficient novel synthesis of 2,4,5-trisubstituted imidazoles for α-glucosidase inhibition to treat diabetes, Bioorg. Chem. 58 (2015) 65-71.

  • 加载中
    1. [1]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    6. [6]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    7. [7]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    8. [8]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    9. [9]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    10. [10]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    11. [11]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    12. [12]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    13. [13]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    16. [16]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    17. [17]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    18. [18]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    19. [19]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    20. [20]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return